Topology optimization of a load-bearing structure via the method of convex linearization

Abstract


A method of topology optimization based on the convex linearization approach is proposed. The problem formulation implies minimization of the strain energy of a structure subject to volume constraint. The solution is based on explicit, convex and separable Lagrangian approximation with the involvement of the duality theory. A non-linear model is used to relate design variables (density) and elastic properties of the material (modulus of elasticity). The sensitivity of the gain function and the constraint function is analyzed. The basic design formulae for the iteration algorithm of topology optimization are obtained. A number of test problems that correspond to the basic load states: tension, shear and torsion are considered. For all cases the load-carrying factor is calculated: both analytically and with the use of finite-element models. The resulting topologies are shown to be in full compliance with engineering concepts of theoretically optimal structures.


About the authors

E. A. Kishov

Samara National Research University

Author for correspondence.
Email: evgeniy.kishov@ssau.ru

Russian Federation

Postgraduate Student

V. A. Komarov

Samara National Research University

Email: vkomarov@ssau.ru

Russian Federation

Doctor of Science (Engineering), Professor

References

  1. Komarov V.A. Theoretical basis for design of load-bearing structures produced using additive technologies. Ontology of designing. 2017. V. 7, no. 2 (24). P. 191-206. doi: 10.18287/2223-9537-2017-7-2-191-206. (In Russ.)
  2. Niu M.C.Y. Airframe structural design: Practical Design Information and Data on Aircraft Structures. Hong Kong: Conmilit Press Ltd, 1988. 612 p.
  3. Endogur A.I. Proektirovanie aviatsionykh konstruktsiy [Designing aircraft structures Moscow: MAI-PRINT Publ., 2009. 537 p.
  4. Komarov A.A. Osnovy proektirovaniya silovykh konstruktsiy [Basics of structural design]. Kuybyshev: Kuybyshevskoe Knizhnoe Izdatel'stvo Publ., 1965. 88 p.
  5. Komarov V.A. Proektirovanie silovykh skhem aviatsionnykh konstruktsiy. Sb. statey «Aktual'nye problem aviatsionnoy nauki i tekhniki». Moscow: Mashinostroenie Publ., 1984. P. 114-129. (In Russ.)
  6. Bendsoe M.P., Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer, 2003. 271 p.
  7. Christensen P.W., Klarbring А. An introduction to structural optimization. Springer, 2003. 214 p.
  8. Lazarev I.B. Matematicheskie metody optimal'nogo proektirovaniya konstruktsiy [Mathematical methods of optimal structural design]. Novosibirsk: Siberian Transport University Publ., 1974. 192 p.
  9. Bendsoe M.P. Optimal shape design as a material destribution problem. Structural Optimization. 1989. V. 1, Iss. 4. P. 193-202. doi: 10.1007/bf01650949
  10. Fleury C., Braibant V. Structural optimization: a new dual method using mixed variables. International Journal for Numerical Methods in Engineering. 1986. V. 23, Iss. 3. P. 409-428. doi: 10.1002/nme.1620230307
  11. Conn A.R., Gould N.I.M., Toint Ph.L. Trust Region Methods. SIAM, 2000. 959 p.
  12. Komarov V.A. Structure stiffening by topological changes. Vestnik of the Samara State Aerospace University. 2003. No. 1 (3). P. 24-37. (In Russ.)
  13. Komarov V.A. Proving Theorems of Changing Structure Rigidity. Vestnik of the Samara State Aerospace University. 2004. No. 1 (5). P. 49-51. (In Russ.)
  14. Wasiutinski Z. On the congruency of the forming according to the minimum potential energy with that according to the equal strength. Bull. Acad. Polon. Sci. 1960. No. 6. P. 344-365.
  15. Kozlov D.M., Maynskov V.N., Reznichenko G.A. Proektirovanie detali: uchebnoe posobie [Part design: textbook]. Samara: Samara State Aerospace University Publ., 2012. 88 p.
  16. Lewinski T., Zhou M., Rozvany G.I. N. Extended exact solutions for least-weight truss-layouts – Part I: Cantilever with horizontal axis of symmetry. International Journal of Mechanical Sciences. 1994. V. 36, Iss. 5. P. 375-398. doi: 10.1016/0020-7403(94)90043-4
  17. Sigmung O., Aage N., Andreassen E. On the (non-)optimality of Michell structures. Structural and Multidisciplinary Optimization. 2016. V. 54, Iss. 2. P. 361-373. doi: 10.1007/s00158-016-1420-7

Statistics

Views

Abstract - 81

PDF (Russian) - 213

Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies