Сhoice of materials for producing dimensionally stable load-carrying structures

Abstract

The article deals with the problems of choosing materials for producing dimensionally stable load-carrying structures of space optical electronic complexes. Physical and mechanical properties of successfully applied and promising composite materials obtained by theoretical and experimental research are presented. A comparative analysis of properties of carbon-filled plastics is given according to the percentage of filler content in a composite matrix and the elastic modulus of carbon fiber. Experimental data related to the properties of carbon-filled plastics based on various fibers are presented. The dependence of the temperature coefficient of linear expansion (TCLE) of various carbon-filled plastics with unidirectional and quasi-isotropic structures is studied theoretically and experimentally. The stability of TCLE is shown to be approximately equal to 1·10-6 ˚C-1 in the area with 50-60% volume filler content. The TCLEs and elastic moduli of carbon-filled plastics and optical glasses of telescope elements are compared. The task of developing a composite material with a TCLE value characteristic of titanium alloys is discussed. Recommendations for applying the analyzed composite materials in the development of dimensionally stable space structures are given.

About the authors

V. E. Bitkin

LLC Special Development and Technology Bureau Plastik

Author for correspondence.
Email: gksi@sktb-plastik.ru

First Deputy General Director, General Designer for Measuring Systems

Russian Federation

O. G. Zhidkova

LLC Special Development and Technology Bureau Plastik

Email: opriokr-prg@sktb-plastik.ru

Deputy General Designer for Scientific Research

Russian Federation

V. A. Komarov

Samara National Research University

Email: vkomarov@ssau.ru

Doctor of Science (Engineering), Professor

Russian Federation

References

  1. Testoedov N.A., Dvirniy G.V., Permyakov M.Yu. Temperature deformation value definition of size stable reflectors. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva. 2011. No. 2 (35). P. 67-71. (In Russ).
  2. Popov N.N, Filonov A.S., Dontsov G.A. Vursol A.V., Rodimkina E.Yu., Matveev D.S. Structural materials of optical modules for Earth’s remote sensing. Izvestia vuzov «Geodesy and aerophotography». 2012. No. 5. P. 101-105. (In Russ.)
  3. Alieva S.G., Al'tman M.B., Ambartsumyan S.M. Promyshlennye alyuminievye splavy [Industrial aluminum alloys]. Moscow: Metallurgiya Publ., 1984. 527 p.
  4. Chechulin B.B., Ushkov S.S., Razuvaeva I.N., Gol'dfayn V.N. Titanovye splavy v mashinostroenii [Titanium alloys in mechanical engineering]. Leningrad: Mashinostroenie Publ., 1977. 248 p.
  5. Abdulkadyrov М., Semenov А. Modern ways of production of astronomical and space mirrors. Photonics. 2015. No. 3 (51). P. 62-79. (In Russ.)
  6. Komarov V.A. Theoretical basis for design of load-bearing structures produced using additive technologies. Ontology of Designing. 2017. V. 7, no. 2 (24). P. 191-206. doi: 10.18287/2223-9537-2017-7-2-191-206 (In Russ.)
  7. Bitkin V.E., Denisov A.V., Zhidkova O.G., Bitkina O.V. Technological complex for manufacturing of high-precision dimensionally stable composite elements of structures of integrated type. Composite Materials Constructions. 2014. No. 1 (133). P. 18-23. (In Russ.)
  8. Vasil'ev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of structures made of composite materials]. Moscow: Mashinostroenie Publ., 272 p.
  9. Aristov V.F., Khalimanovich V.I., Mironovich V.V., Islentyeva T.A., Gurov D.A. Cyanate ester coupling agents in aerospace industry. Catalytic properties of organometallic complexes and diazonium salts with complex anions in the curing reaction of cyanate ester coupling agents. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva. 2013. No. 2 (48). P. 159-165. (In Russ.)
  10. Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya: uch. posobie [Winding procedures for composite space rocket structures]. Moscow: Bauman Moscow State Technical University Publ., 2011. 431 p.
  11. Vasiliev V.V., Morozov E.V. Advanced Mechanics of Composite Materials and Structural Elements. Elsevier, 2013. 816 p.
  12. Molodtsov G.A., Bitkin V.E., Simonov V.F., Urmansov F.F. Formostabil'nye iintellektual'nye konstruktsii iz kompozitsionnykh materialov [Size-stable and smart composite structures]. Moscow: Mashinostroenie Publ., 2000. 352 p.
  13. Bitkin V.E., Zhidkova O.G., Denisov A.V., Borodavin A.V., Mityushkina D.V., Rodionov A.V., Nonin A.S. Mathematical simulation for strain-stress state of optical telescope stable-size composite elements with finite-element method. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki. 2016. V. 20, no. 4. P. 707-729. doi: 10.14498/vsgtu1514 (In Russ.)
  14. Polilov A.N., Tatous N.A. FRP strength criteria for some experimental effects substantiation. Engineering and Automation Problems. 2008. No. 3. P. 103-109. (In Russ.)
  15. Komarov V.A., Kishov E.A., Charkviani R.V., Pavlov A.A. Numerical and experimental study of the strength of fabric carbon-epoxy composite structures. Vestnik of the Samara State Aerospace University. 2015. V. 14, no. 2. P. 106-112. doi: 10.18287/2412-7329-2015-14-2-106-112 (In Russ.)
  16. Strizhalo V.A., Zemtsov M.P. Rigidity and Strength of Laminated Carbon Plastics under Uniaxial Loading. Strength of Materials. 2001. V. 33, Iss. 6. P. 548-555. doi: 10.1023/A:1014126822257
  17. Gunyaev G.M., Sorina T.G., Khoroshilova I.P., Rumyantsev A.F. Structural carbon-epoxy composites. Aviation Industry. 1984. No. 12. P. 41-45. (In Russ.)
  18. GOST 25.601-80. Design calculation and strength testings. Methods of Mechanical testing of Polymeric Composite Materials Test for Tensile Properties on Plane Specimens at Normal, Elevated and Low Temperatures. Moscow: Izdatel'stvo Standartov Publ., 1980. 14 p. (In Russ.)
  19. GOST 25.602-80. Design calculation and strength testings. Methods of Mechanical testing of Polymeric Composite Materials. Test for Compression Properties at normal, elevated and low temperatures. Moscow: Izdatel'stvo Standartov Publ., 1980. 18 p. (In Russ.)
  20. GOST R 50578-93. Polymer composites. Plate distortion shear test. Moscow: Izdatel'stvo Standartov Publ., 1993. 15 p. (In Russ.)

Statistics

Views

Abstract: 1457516

PDF (Russian): 742

Dimensions

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies