Relation between flame chemiionization and variable-volume combustion chamber temperature and pressure


The article presents the results of investigating the relation between flame chemiionization and the flame temperature and pressure in a variable- volume combustion chamber. Functional dependences of flame temperature and maximum pressure on the electron current caused by flame chemiionization, fundamental characteristics of flame propagation and combustion efficiency are presented. Comparison of the temperature calculated by the proposed method with experimental data shows that with the excess air factor of 0.8 to 1.15, the precision is more than 85%. Comparison of the maximum pressure obtained experimentally and calculated by the refined Vibe model, using the proposed formulas, showed good agreement. The results of the work can be used to predict and monitor maximum flame temperature and pressure in the combustion chamber of an internal combustion engine and other power plants using an ionization probe.

About the authors

A. P. Shaikin

Togliatti State University

Author for correspondence.

Doctor of Science (Engineering), Professor
Professor of the Department of Energy Machines and Control Systems

Russian Federation

I. R. Galiev

Togliatti State University


Candidate of Science (Engineering)
Associate Professor of the Department of Vehicle Design and Operation

Russian Federation


  1. Nanthagopal K., Subbarao R., Elango T., Baskar P., Annamalai K. Hydrogen enriched compressed natural gas (HCNG): A futuristic fuel for internal combustion engines. Thermal Science. 2011. V. 15, Iss. 4. Р. 1145-1154. doi: 10.2298/tsci100730044n
  2. Rakopoulos C.D., Scott M.A., Kyritsis D.C., Giakoumis E.G. Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines. Energy. 2008. V. 33, Iss. 2. Р. 248-255. doi: 10.1016/
  3. Molina D., Restrepo F., Bedoya I. Combustion Monitoring System On A Natural Gas Fuelled Spark Ignition Engine With High Compression Ratio Using Ionization Current Sensors. Proceedings Energy and Sustainability VI. 2015. V. 195. P. 209-218. doi: 10.2495/esus150181
  4. Yasnikov I.S., Ivashin P.V., Shaikin A.P. On the turbulent propagation of a flame in a closed volume. Technical Physics. 2013. V. 58, Iss. 11. P. 1587-1591. doi: 10.1134/s1063784213110297
  5. Shaikin A.P., Galiev I.R. On the effect of temperature and the width of the turbulent combustion zone on the ionization detector readings. Technical Physics. 2016. V. 61, Iss. 8. P. 1206-1208. doi: 10.1134/s1063784216080247
  6. Shaikin A.P., Ivashin P.V., Galiev I.R., Deryachev A.D. Kharakteristiki rasprostraneniya plameni i ikh vliyaniye na obrazovaniye nesgorevshikh uglevodorodov i oksida azota v otrabotavshikh gazakh pri dobavke vodoroda v toplivno-vozdushnuyu smes' energeticheskikh ustanovok s iskrovym zazhiganiyem [Characteristics of flame propagation and their influence on the formation of unburned hydrocarbons and nitric oxide in the exhaust gases with the addition of hydrogen to the fuel-air mixture of spark-ignition power plants]. Samara: Samarskiy Nauchnyy Tsentr RAN Publ., 2016. 259 p.
  7. Gao Z., Wu X., Gao H., Liu B. Investigation on characteristics of ionization current in a spark-ignition engine fueled with natural gas-hydrogen blends with BSS de-noising method. International Journal of Hydrogen Energy. 2010. V. 35, Iss. 23. P. 12918-12929. doi: 10.1016/j.ijhydene.2010.08.129
  8. Gardiner W.C. Combustion Chemistry. New York: Springer-Verlag, 1984. 351 p.
  9. Hermanns R.T. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures. Veenendaal: Universal Press, 2007. 144 р.
  10. Heywood J.B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988. 930 p.
  11. Verhelst S., Woolley R., Lawes M., Sierens R. Laminar and unstable burning velocities and Markstein lengths of hydrogen – air mixtures at engine-like conditions. Proceedings of the Combustion Institute. 2005. V. 30, Iss. 1. P. 209-216. doi: 10.1016/j.proci.2004.07.042
  12. Gel'fand B.E., Popov O.E., Chayvanov B.B. Vodorod: parametry goreniya i vzryva [Hydrogen: parameters of combustion and explosion]. Moscow: Fizmatlit Publ., 2008. 288 p.
  13. Ma F., Naeve N., Wang L. Hydrogen-enriched compressed natural gas as a fuel for engines // Natural Gas. 2010. P. 307-333. doi: 10.5772/9852
  14. Mohammed S.E., Baharom M.B., Aziz A.R.A. Analysis of engine characteristics and emissions fueled by in-situ mixing of small amount of hydrogen in CNG. International Journal of Hydrogen Energy. 2011. V. 36, Iss. 6. Р. 4029-4037. doi: 10.1016/j.ijhydene.2010.12.065
  15. Ceper B.A. Usability of hydrogen–natural gas mixtures in internal combustion engines. Phd thesis. Erciyes Unversity, Institute of Natural Sciences, 2009. 230 р.
  16. Negurescu N., Pana C., Cernat A. Aspects of using hydrogen in SI engine. UPB Scientific Bulletin, Series D: Mechanical Engineering. 2012. V. 74, Iss. 1. Р. 11-20.
  17. Bortnikov L.N., Pavlov D.A., Rusakov M.M., Shaikin A.P. The composition of combustion products formed from gasoline-hydrogen-air mixtures in a constant-volume spherical chamber. Russian Journal of Physical Chemistry B. 2011. V. 5, Iss. 1. P. 75-83. doi: 10.1134/s1990793111010039
  18. Arutyunov V.S., Borisov A.A., Politenkova G.G., Rakhmetov A.N., Troshin K.Ya. The effect of hydrogen additives on the lean flammability limit of methane. Combustion and Explosion. 2012. No. 5. P. 28-32. (In Russ.)
  19. Cho E.-S., Chung S.H. Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion. Journal of Mechanical Science and Technology. 2009. V. 23, Iss. 3. Р. 650-658. doi: 10.1007/s12206-008-1223-x



Abstract: 1399

PDF (Russian): 819




  • There are currently no refbacks.

Copyright (c) 2018 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies