Development of a new collector device for gas turbine engine afterburner


Cite item

Full Text

Abstract

The paper presents an analysis of the peculiarities of operation of gas-turbine engines with an afterburner. The main shortcomings of the existing afterburners are described.  The structural design of afterburners is analyzed. It is shown that the existing afterburners do not provide efficient control of the working process throughout the operational range of heights and speeds of flight. Methods of calculating the parameters of the working process organization in the afterburners are specified. The necessity to control the place and the angle of supply of fuel upstream of the flame stabilizer is proved. New operating factors are proposed for the system of automatic control of the afterburner. The use of new structural designs of collector devices incorporated in the afterburner is justified. These devices allow efficient control of the organization of the working process in them throughout the operational range of heights and speeds of flight. The classification of afterburners is specified and the advantages of gas-turbine engines incorporating afterburners with adaptive fuel supply collector devices are justified. 

About the authors

D. N. Teslya

Military Educational and Scientific Center of the Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin

Author for correspondence.
Email: patmi@rambler.ru

Adjunct of the Department of Aircraft Engines; Captain

Russian Federation

S. A. Mayatsky

Military Educational and Scientific Center of the Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin

Email: mslo@yandex.ru

Head of Department 7, Colonel

Russian Federation

T. V. Grasko

Military Educational and Scientific Center of the Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin

Email: grasko83@mail.ru

Senior Lecturer of the Department of Aircraft Engines, Lt. Colonel

Russian Federation

References

  1. Pakhol'chenko A.A., Cherkasov A.N., Alekseev A.A., Koren' G.P., Moskaev V.A. Teoriya aviatsionnykh dvigateley: Funktsional'nye element seriynykh silovykh ustanovok: uchebnoe posobie [Theory of aircraft engines: functional units of production power plants: Tutorial]. Voronezh: Voenno-vozdushnaya Akademiya Publ., 2015. 231 p.
  2. Sirotin N.N., Novikov A.S., Pankin A.G., Sirotin A.N. Osnovy konstruirovaniya, proizvodstva i ekspluatatsii aviatsionnykh gazoturbinnykh dvigateley i energeticheskikh ustanovok v sisteme САLS tekhnologiy: v 3 kn. [Fundamentals of design, manufacture and operation of aircraft gas turbine engines and power plants in the system of CALS technologies: in 3 books.] Moscow: Nauka Publ., 2011.
  3. Lefebvre A.H. Gas Turbine Combustion. Hemisphere Pub. Corp., 1983. 531 p.
  4. Nechaev Yu.N., Fedorov R.M., Kotovskiy V.N., Polev A.S. Teoriya aviatsionnykh dvigateley. Ch. 1 [Theory of aircraft engines. Textbook for higher educational institutions of the Air Force]. Moscow: Voenno-vozdushnaya Inzhenernaya Akademiya imeni N.E. Zhukovskogo Publ., 2006. 365 p.
  5. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatel'nykh kompaniy po sozdaniyu perspektivnykh aviatsionnykh dvigateley (analiticheskiy obzor) [Works of the leading aircraft engine companies on creating advanced aircraft engines: analytical review]. Moscow: Central Institute of Aviation Motors Publ., 2004. 424 p.
  6. Kudryavtsev A.V., Medvedev V.V. Forsazhnye kamery i kamery sgoraniya PVRD. Inzhenernye metodiki rascheta kharakteristik [Ramjet engine afterburners and combustion chambers. Engineering practices of performance calculation]. Moscow: Central Institute of Aviation Motors Publ., 2013. 113 p.
  7. Skubachevskiy G.S. Aviatsionnye gazoturbinnye dvigateli. Konstruktsiya i raschet detaley [Aircraft gas turbine engines. Design and calculation of the parts]. Moscow: Mashinostroenie Publ., 1981. 550 p.
  8. Evdokimov A.I., Kotsyubinskiy S.V., Frolov V.B., Gorskiy A.N., Titov D.V. Konstruktsiya i prochnost' aviadvigateley [Aircraft engine design and strength]. Moscow: Voenno-vozdushnaya Inzhenernaya Akademiya imeni N.E. Zhukovskogo Publ., 2007. 339 p.
  9. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigateley: konstruktsiya, modelirovanie protsessov i raschet: uchebnoe posobie [Combustion chambers of gas turbine engines. Design, simulation and calculation: Tutorial]. Kazan: Kazan National Research Technical University Publ., 2006. 219 p.
  10. Nechaev Yu.N., Kobel'kov V.N., Polev A.S. Aviatsionnye turboreaktivnye dvigateli s izmenyaemym rabochim protsessom dlya mnogorezhimnykh samoletov [Variable-cycle aviation turbojets for multi-mode aircraft]. Moscow: Mashinostroenie Publ., 1988. 175 p.
  11. Pchelkin Yu.M. Kamery sgoraniya gazoturbinnykh dvigateley [Combustion chambers of gas turbine engines]. Moscow: Mashinostroenie Publ., 1984. 280 p.
  12. Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok [Theory, calculation and design of aviation engines and power plants]. Moscow: Mashinostroenie Publ., 2002. 616 p.
  13. Waltrup P.J., White M.E., Zarlingo F., Gravlin E.S. History of U.S. Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development. Journal of Propulsion and Power. 2002. V. 18, Iss. 1. P. 14-27. doi: 10.2514/2.5928
  14. Goyne C.P., Hall C.D., O’Brian W.F., Schetz J.A. The Hy-V Scramjet Flight Experiment. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. 2006. doi: 10.2514/6.2006-7901
  15. Kudinov V.A., Kartashov E.M., Stefanyuk E.V. Teoreticheskaya termodinamika i teploperedacha: uchebnik dlya bakalavrov [Theoretical thermodynamics and heat transfer]. Moscow: Yurayt Publ., 2011. 560 p.
  16. Abramovich G.N. Teoriya turbulentnykh struy. Reprintnoe vosproizvedenie izdaniya 1960 g. [Theory of turbulent flows. Reprint of the 1960 edition]. Moscow: EKOLIT Publ., 2011. 720 p.
  17. Gras′ko T.V., Mayatskiy S.A. Numerical technique for projected gas turbine engine’s main chamber combustion analysis. Vestnik UGATU. 2014. V. 18, no. 3 (64). P. 23-29. (In Russ.)
  18. Zhukov N.P. Gidrogazodinamika: uchebnoe posobie [Flow dynamics. Manual]. Tambov: Tambov State Technical University Publ., 2011. 92 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies