Simulation of the processes of spraying and combustion of kerosene and liquid oxygen in the chamber of a liquid-propellant rocket engine


Cite item

Full Text

Abstract

The paper presents the results of simulation of spray and combustion processes in the liquid-propellant rocket engine chamber using the z77 reduced kinetic mechanism of chemical reactions and a hybrid method for determining spray parameters of a swirl atomizer. Simulation was carried out for the nominal operational conditions in a three-dimensional domain using the ANSYS Fluent software. The process of spraing liquid fuel components (T-1 kerosene and oxygen) by monopropellant injectors was simulated using a model of discontinuous phases. The simulation results (pressure, temperature and velocity) were compared with the data of analytical thermogasdynamic calculation results and experimental results for pressure in chamber and gas temperature near the wall. The difference between the simulation results and the experimental results does not exceed 8%. Thus, it was shown that it is possible to use the mechanism z77 and hybrid method for determining spray parameters of a swirl atomizer presented in this paper to obtain accurate simulation results of the kerosene T-1 and oxygen spray and combustion processes of the investigated liquid-propellant rocket engine.

About the authors

M. N. Senchev

Samara National Research University

Author for correspondence.
Email: senchevmn@mail.ru
ORCID iD: 0009-0007-9472-6767

Postgraduate Student

Russian Federation

I. A. Zubrilin

Samara National Research University

Email: zubrilin.ia@ssau.ru
ORCID iD: 0000-0001-5876-8571

Senior Researcher, Candidate of Science (Engineering), Associate Professor

Russian Federation

A. A. Yurtaev

Samara National Research University

Email: don.yurtaev2016@yadnex.ru
ORCID iD: 0000-0001-7918-9181

Student

Russian Federation

М. A. Benedyuk

Samara National Research University

Email: benedyuk00@bk.ru
ORCID iD: 0000-0003-0356-2618

Student

Russian Federation

Yu. V. Komisar

Samara National Research University

Email: komisar.yuv@ssau.ru

Postgraduate Student

Russian Federation

References

  1. Zettervall N., Furebya C., Nilsson E.J.K. A reduced chemical kinetic reaction mechanism for kerosene-air combustion. Fuel. 2020. V. 269. doi: 10.1016/j.fuel.2020.117446
  2. Borovik I.N., Strokach E.A. Spray diameter distribution influence on liquid rocket combustion chamber performance. PNRPU Aerospace Engineering Bulletin. 2016. No. 44. P. 45-62. (In Russ.). doi: 10.15593/2224-9982/2016.44.03
  3. Vorobiev A.G., Borovik I.N., Ha S. Analysis of nonstationary thermal state of a low-thrust liquid rocket engine taking into account injection, evaporation and combustion of liquid fuel droplets. Vestnik of the Samara State Aerospace University. 2014. No. 1 (43). P. 41-55. (In Russ.). doi: 10.18287/1998-6629-2014-0-1(43)-41-55
  4. Qin J., Zhang H. Numerical analysis of self-excited combustion instabilities in a small MMH/NTO liquid rocket engine. International Journal of Aerospace Engineering. 2020. V. 2020. doi: 10.1155/2020/3493214
  5. Senchev M.N., Zubrilin I.A., Didenko A.A., Galitenko V.O. Research of outflow from swirl injectors of a liquid rocket engine on fuel components kerosene and liquid oxygen. All-Russian Scientific-Technical Journal «Polyot». 2022. No. 7. P. 28-35. (In Russ.)
  6. Strokach E.A., Borovik I.N. Numerical simulation of kerosene dispersion process by the centrifugal atomizer. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. 2016. No. 3 (108). P. 37-54. (In Russ.). doi: 10.18698/0236-3941-2016-3-37-54
  7. Gurakov N.I., Matveev S.G., Zubrilin I.A., Didenko A.A., Hernandez Morales M., Yastrebov V.V. A hybrid method for estimating sauter mean diameter (D32) of kerosene droplets from pressure-swirl atomizers. Sbornik Dokladov Mezhdunarodnoy Nauchno-Tekhnicheskoy Konferentsii «Problemy i Perspektivy Razvitiya Dvigatelestroeniya» (June, 23-25, 2021, Samara). V. 2. Samara: Samara University Publ., 2021. P. 146-147. (In Russ.)
  8. Dikshit S.B., Kulshreshtha D.B., Channiwala S.A. Numerical simulation of pressure swirl atomizer for small scale gas turbine combustion chamber. Proceedings of the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (July, 17-19, 2017, Portorož, Slovenia). Р. 171-176.
  9. ANSYS FLUENT 15.0 Theory Guide. Canonsburg: SAS IP, Inc., 2013. 780 p.
  10. Cai H., Nie W., Yang X., Wu R., Su l. Three-dimensional numerical analysis of LOX/kerosene engine exhaust plume flow field characteristics. International Journal of Aerospace Engineering. 2017. V. 2017. doi: 10.1155/2017/4768376
  11. Mosolov S.V., Sidlerov D.A., Ponomarev A.A., Smirnov Yu.L. Numerical research on the peculiarities of the operational process in LRE combustion chambers propelled by oxygen and hydrocarbons. Trudy MAI. 2012. No. 58. (In Russ.)
  12. Senchev M.N., Zubrilin I.A., Yurtaev A.A., Komisar Yu.V. Analysis of the kerosene combustion simulation for a liquid-propellant rocket engine. Thermal Processes in Engineering. 2022. V. 14, no. 1. P. 42-48. (In Russ.). doi: 10.34759/tpt-2022-14-1-42-48
  13. Kutsenko Yu.G. Metody rascheta i analiza dlya modelirovaniya protsessa raspyla zhidkogo topliva. Materialy X Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Protsessy Goreniya, Teploobmena i Ekologiya Teplovykh Dvigateley» (September, 27-28, 2017, Samara, Russian Federation). Samara: Samara University Publ., 2017. P. 32-33. (In Russ.)
  14. Xiao W., Huang Y. Improved semiempirical correlation to predict sauter mean diameter for pressure-swirl atomizers. Journal of Propulsion and Power. 2014. V. 30, Iss. 6. P. 1628-1635. doi: 10.2514/1.B35238
  15. RE 301-02-207-2000. Fuel T-1 (T-1 C). Physico-chemical and operational properties. User Manual. SPb: Russian Research Center Applied Chemistry Publ., 2000. 73 p. (In Russ.)
  16. Vargaftik N.B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Handbook on thermophysical properties of gases and liquids]. Moscow: Nauka Publ., 1972. 720 p.
  17. Roder H.M., Weber L.A. ASRDI oxygen technology survey. V. 1. Termophysical properties. NASA Publ., 1972. 434 p.
  18. Jurns J.M., Hartwig J.W. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures. Cryogenics. 2012. V. 52, Iss. 4-6. P. 283-289. doi: 10.1016/j.cryogenics.2012.01.022
  19. ANSYS FLUENT 15.0 User’s Guide. Canonsburg: SAS IP, Inc., 2013. 2620 p.
  20. Dobrovol'skiy M.V. Zhidkostnye raketnye dvigateli [Liquid rocket engines]. Moscow: Mashinostroenie Publ., 1968. 396 p.
  21. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley: uchebnik dlya vuzov / pod red. / V.M. Kudryavtseva [Fundamentals of the theory and calculation of liquid-propellant rocket engines. Textbook for universities / ed. by V.M. Kudryavtsev]. Moscow: Vysshaya Shkola Publ., 1975. 656 p.
  22. Naber J., Reitz R.D. Modeling engine spray/wall impingement. SAE Technical Paper Series. 1988. doi: 10.4271/880107
  23. Sazhin S.S. Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science. 2006. V. 32, Iss. 2. P. 162-214. doi: 10.1016/j.pecs.2005.11.001
  24. GOST 17655-89. Liquid-propellant rocket engines. Terms and definitions. Moscow: Izdatel'stvo Standartov Publ., 1990. 59 p. (In Russ.)
  25. Levochkin P.S., Chvanov V.K., Ganin I.A., Nizhegorodtsev V.P., Yakovlev E.S. Ground experimental testings of 14D21, 14D22 rocket engines and D664-000, D664-200, D664-400 steering units on «O2 + naphthyl» propellant components. Trudy NPO Energomash imeni akademika V.P. Glushko. 2019. No. 36. P. 320-339. (In Russ.)
  26. Mel'kumov T.M., Melik-Pashaev N.I., Chistyakov P.G., Shiukov A.G. Raketnye dvigateli [Liquid rocket engines]. Moscow: Mashinostroenie Publ., 1976. 400 p.
  27. Miller R.S., Harstad K., Bellan J. Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas-liquid flow simulations. International Journal of Multiphase Flow. 1998. V. 24, Iss. 6. P. 1025-1055. doi: 10.1016/S0301-9322(98)00028-7
  28. Kuo K.K. Principles of combustion. New York: John Wiley and Sons Publ., 1986. 810 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies