Through-thickness damage distribution in sheet bending employing the workability diagram


Cite item

Full Text

Abstract

A semi-analytical solution is constructed to determine the through-thickness distribution of the average stress triaxiality parameter included in the ductile fracture criterion in sheet bending under the action of a bending moment and tensile force. It is assumed that the condition of the sheet is plain-strain. The sheet material is elastic-plastic, and the uniaxial yield stress is an arbitrary function of the equivalent plastic strain. The solution allows for predicting the occurrence of plastic fracture and the distribution of the degree of use of the plasticity reserve over the sheet thickness.

About the authors

E. A. Lyamina

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: lyamina@inbox.ru
ORCID iD: 0000-0002-7319-8703

Candidate of Science (Phys. & Math.), Associated Professor; Senior Researcher of the Laboratory of Technological Processes

Russian Federation

References

  1. Atkins A.G. Fracture in forming. Journal of Materials Processing Technology. 1996. V. 56, Iss. 1-4. P. 609-618. doi: 10.1016/0924-0136(95)01875-1
  2. Landre J., Pertence A., Cetlin P.R., Rodrigues J.M.C., Martins P.A.F. On the utilisation of ductile fracture criteria in cold forging. Finite Elements in Analysis and Design. 2003. V. 39, Iss. 3. P. 175-186. doi: 10.1016/S0168-874X(02)00065-3
  3. Liu H., Fu M. Prediction and analysis of ductile fracture in sheet metal forming. Part I: A modified Ayada criterion. International Journal of Damage Mechanics. 2014. V. 23, Iss. 8. P. 1189-1210. doi: 10.1177/1056789514541559
  4. Liu H., Fu M. Prediction and analysis of ductile fracture in sheet metal forming. Part II: Application of the modified Ayada criterion. International Journal of Damage Mechanics. 2016. V. 25, Iss. 2. P. 120-140. doi: 10.1177/1056789514535231
  5. Lemaitre J. Coupled elasto-plasticity and damage constitutive equations. Computer Methods in Applied Mechanics and Engineering. 1985. V. 51, Iss. 1-3. P. 31-49. doi: 10.1016/0045-7825(85)90026-X
  6. Miloud M.H., Imad A., Benseddiq N., Bachir Bouiadjra B., Bounif A., Serier B. A numerical analysis of relationship between ductility and nucleation and critical void volume fraction parameters of Gurson – Tvergaard – Needleman model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2013. V. 227, Iss. 11. P. 2634-2646. doi: 10.1177/0954406213476232
  7. Kolmogorov V.L., Bogatov A.A., Migachev B.A., Zudov E.G., Freydenzon Yu.E., Freydenzon M.E. Plastichnost' i razrushenie [Plasticity and fracture]. Moscow: Metallurgiya Publ., 1977. 336 p.
  8. Vujovic V., Shabaik A.H. A new workability criterion for ductile metals. Journal of Engineering Materials and Technology. 1986. V. 108, Iss. 3. P. 245-249. doi: 10.1115/1.3225876
  9. Alexandrov S., Vilotic D., Konjovic Z., Vilotic M. An improved experimental method for determining the workability diagram. Experimental Mechanics. 2013. V. 53. P. 699-711. doi: 10.1007/s11340-012-9676-3
  10. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem [Theory of metal forming]. Moscow: Mashinostroenie Publ., 1977. 423 p.
  11. Renne I.P. Plasticheskiy izgib listovoy zagotovki. Trudy Tul'skogo Mekhanicheskogo Instituta. Vyp. 4. Moscow: Oborongiz Publ., 1950. P. 146-162. (In Russ.)
  12. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of elasticity, plasticity, and creep theories]. Moscow: Vysshaya Shkola Publ., 1968. 512 p.
  13. Moshnin E.N. Gibka i pravka na rotatsionnykh mashinakh [Bending and leveling in rotary machines]. Moscow: Mashinostroenie Publ., 1967. 272 p.
  14. Alexandrov S., Hoon Kim J., Chung K., Jin Kang T. An alternative approach to analysis of plane-strain pure bending at large strains. The Journal of Strain Analysis for Engineering Design. 2006. V. 41, Iss. 5. P. 397-410. doi: 10.1243/03093247JSA154
  15. Alexandrov S., Manabe K.-I., Furushima T. A general analytic solution for plane strain bending under tension for strain-hardening material at large strains. Archive of Applied Mechanics. 2011. V. 81. P. 1935-1952. doi: 10.1007/s00419-011-0529-9
  16. Alexandrov S., Vilotic M., Jeng Y.-R., Plancak M. A study on material workability by up-setting of non-axisymmetric specimens by flat dies. Journal of Mechanics. 2014. V. 30, Iss. 6. P. 585-592. doi: 10.1017/jmech.2014.67
  17. Vilotic D., Chikanova N., Alexandrov S. Disc upsetting between spherical dies and its application to the determination of forming limit curves. The Journal of Strain Analysis for Engineering Design. 1999. V. 34, Iss. 1. P. 17-22. doi: 10.1243/0309324991513588

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies