Improving the accuracy of industrial robot movements in the process of incremental shaping


Cite item

Full Text

Abstract

The paper shows the relevance of using a laser tracker as part of an automated technological complex to improve the accuracy of movements of an industrial robot manipulator in the process of incremental shaping. The requirements for the measuring system of the technological complex are formulated. A mathematical model of the magnitude of the signal recorded using a laser tracker based on the results of measuring the movements of the robot manipulator is constructed. An algorithm for correcting robot movements in the process of incremental shaping in real time is described.

About the authors

N. A. Sazonnikova

Samara National Research University

Author for correspondence.
Email: nasazonnikova@yandex.ru

Doctor of Science (Engineering), Professor of the Department of Power Plant Automatic Systems

Russian Federation

V. N. Ilyukhin

Samara National Research University

Email: iwnik@yandex.ru

Candidate of Science (Engineering), Associate Professor of the Department of Power Plant Automatic Systems

Russian Federation

S. V. Surudin

Samara National Research University

Email: innosam63@gmail.com

Candidate of Science (Engineering), Associate Professor of the Department of Metal Forming

Russian Federation

D. A. Mezentsev

Samara National Research University

Email: curucum@mail.ru

Postgraduate Student, Department of Power Plant Automatic Systems

Russian Federation

References

  1. Arshad S., Rashid A., Melander A. Single point incremental forming. A study of forming parameters, forming limits and part accuracy of Aluminium 2024, 6061 and 7475 alloys. Stockholm: KTH Royal Institute of technology Stockholm, 2012. 102 p.
  2. Medina-Sanchez G., Torres-Jimenez E., Lopez-Garcia R., Dorado-Vicente R., Cazalla-Moral R. Temperature influence on single incremental forming of PVC parts. Procedia Manufacturing. 2017. P. 335-342. doi: 10.1016/j.promfg.2017.09.085
  3. Li L., Zhao Ch., Li Ch., Qin Sh. End position detection of industrial robots based on laser tracker. Instrumentation Mesure Métrologie. 2019. V. 18, Iss. 5. P. 459-464. doi: 10.18280/i2m.180505
  4. Lu X., Jiang T. Working pose measurement and quality evaluation of rotary drilling rig based on laser tracker. Optik. 2019. V. 187. P. 311-317. doi: 10.1016/j.ijleo.2019.04.137
  5. Kamali K., Joubair A., Bonev I.A., Bigras P. Elasto-geometrical calibration of an industrial robot under multidirectional external loads using a laser tracker. IEEE International Conference on Robotics and Automation (May, 16-21, 2016, Stockholm, Sweden). 2016. doi: 10.1109/icra.2016.7487630
  6. Morev D.S., Blokhin D.A., Koltzov A.G. Research of accuracy of industrial robot at work as part of flexible machining cells. Dynamics of Systems, Mechanisms and Machines. 2019. V. 7, no. 3. P. 79-86. (In Russ.). doi: 10.25206/2310-9793-7-3-79-86
  7. Vantsov S.V., Sokolov V.A., Khomutskaya O.V. Analysis of accuracy problems of precision industrial robots. Nauchnoe Priborostroenie. 2021. V. 31, no. 4. P. 110-119. (In Russ.). doi: 10.18358/np-31-4-i110119
  8. Balanev N.V., Yanov R.A. Analysis of factors affecting the positioning accuracy of industrial robots and methods for ensuring specified accuracy. Dostizheniya Nauki i Obrazovaniya. 2016. No. 1 (2). P. 11-14. (In Russ.)
  9. Flynn R., Christensen K., Ryan R. Automated metrology solution to reduce downtime and de-skill tooling recertification. SAE International Journal of Aerospace. 2012. V. 5, Iss. 1. P. 49-56. doi: 10.4271/2012-01-1869
  10. Praveen K., Lingam R., Reddy N.V. Tool path design system to enhance accuracy during double sided incremental forming: An analytical model to predict compensations for small/large components. Journal of Manufacturing Processes. 2020. V. 58. P. 510-523. doi: 10.1016/j.jmapro.2020.08.014
  11. Medina-Sanchez G., Torres-Jimenez E., Lopez-Garcia R., Dorado-Vicente R., Casalla-Moral R. The effect of temperature on the one-time step-by-step molding of PVC parts. University of Jaena, Spain, 2017. P. 335-342.
  12. Nubiola A., Bonev I.A. Absolute calibration of an ABB IRB1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing. 2013. V. 29, Iss. 1. P. 236-245. doi: 10.1016/j.rcim.2012.06.004
  13. Moeller Ch., Schmidt H.Ch., Koch P., Boehlmann Ch., Kothe S., Wollnack J., Wollnack H. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system. SAE International Journal of Aerospace. 2017. V. 10, Iss. 2. P. 100-108. doi: 10.4271/2017-01-2165
  14. Kubela T., Pochyly A., Singule V. Assessment of industrial robots accuracy in relation to accuracy improvement in machining processes. IEEE International Power Electronics and Motion Control Conference (September, 25-28, 2016, Varna, Bulgaria). 2016. doi: 10.1109/EPEPEMC.2016.7752083
  15. Racz S.-G., Crenganiș M., Breaz R.-E., Bârsan A., Gîrjob C.-E., Biriș C.-M., Tera M. Integrating trajectory planning with kinematic analysis and joint torques estimation for an industrial robot used in incremental forming operations. Machines. 2022. V. 10, Iss.7. DOI: /10.3390/machines10070531
  16. Sazonnikova N.A., Ilyukhin V.N., Surudin S.V., Mezentsev D.A. Control of equipment for incremental forming using a laser tracker. Journal of Dynamics and Vibroacoustics. 2021. V. 7, no. 4. P. 30-39. (In Russ.). doi: 10.18287/2409-4579-2021-7-4-30-39

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies