Experimental research of the effect of manufacturing holes and defects on the mechanical characteristics of laminated polymer composite


Cite item

Full Text

Abstract

The paper presents a developed methodology for experimental research of the mechanical characteristics of a laminated polymer composite, taking into account manufacturing holes and defects. The results of experimental determination of mechanical characteristics are presented, the influence of the filler material, the type of fabric fiber weave, holes and manufacturing defects on the mechanical characteristics of laminated carbon fiber reinforced plastic are analyzed. The test specimens were made from carbon fiber 200T, 200P, ACM C300X and binder “Inject SL(B)”. Static tests of specimens for uniaxial tension, compression and three-point bending were performed.

About the authors

A. L. Assi

Samara National Research University

Author for correspondence.
Email: ttukasi@mail.ru
ORCID iD: 0000-0001-9926-7896

Postgraduate Student of the Department of Aircraft Construction and Design

Russian Federation

A. V. Boldyrev

Samara National Research University

Email: boldirev.av@ssau.ru

Doctor of Science (Engineering), Associate Professor, Head of the Department of Aircraft Construction and Design

Russian Federation

A. A. Pavlov

Samara National Research University

Email: alex-alex.pavlov@yandex.ru

Candidate of Science (Engineering), Assistant of the Department of Aircraft Construction and Design; Engineer of the Research and Educational Center for Aircraft Construction

Russian Federation

References

  1. Feygenbaum Yu.M., Butushin S.V., Bozhevalov D.G., Sokolov Yu.S. Composite materials and history their introduction in aircraft structures. Scientific Bulletin of the State Scientific Research Institute of Civil Aviation. 2015. No. 7 (318). P. 24-37. (In Russ.)
  2. Adkhamov A., Numonov A. Prospects for application of PCM in the automotive industry. tecNika. 2021. No. 1 (5). P. 8-13. (In Russ.). doi: 10.24411/2181-0753/2021-100002
  3. Kudritsky V.G. Composite materials for space friction units. Polymer Materials and Technologies. 2022. V. 8, no. 3. P. 82-88. (In Russ.). doi: 10.32864/polymmattech-2022-8-3-82-88
  4. Kablov E.N. Aviation materials science: achievements and prospects. Vestnik Rossiyskoy Akademii Nauk. 2002. V. 72, no. 1. P. 3-12. (In Russ.)
  5. Pavlov S.I. CAE technologies in 2014: review of achievements and market analysis. CAD/CAM/CAE Observer. 2015. No. 4 (96). P. 25-35. (In Russ.)
  6. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Proceedings of VIAM. 2020. No. 12 (94). P. 47-58. (In Russ.). doi: 10.18577/2307-6046-2020-0-12-47-58
  7. Assi A.L. Eksperimental'noe issledovanie vliyaniya vyreza na prochnost' kompozitnoy plastiny, armirovannoy biaksial'noy ugletkan'yu. Sbornik trudov XXIV Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Aerokosmicheskaya Tekhnika, Vysokie Tekhnologii i Innovatsii – 2023» (November, 15-17, 2023, Perm). Perm: Perm National Research Polytechnic University Publ., 2023. P. 26-27. (In Russ.)
  8. Assi A.L., Boldyrev A.V. Razrabotka metodiki eksperimental'nogo issledovaniya prochnosti sloistogo ugleplastika s otverstiem pri rastyazhenii. Sbornik trudov Vserossiyskoy molodezhnoy nauchnoy konferentsii s mezhdunarodnym uchastiem «XVII Korolevskie Chteniya» (October, 3-5, 2023, Samara). V. 1. Samara: Samara University Publ., 2023. P. 144-145. (In Russ.)
  9. Komarov V.A., Kishov E.A., Charkviani R.V., Pavlov A.A. Numerical and experimental study of the strength of fabric carbon-epoxy composite structures. Vestnik of the Samara State Aerospace University. 2015. V. 14, no. 2. P. 106-112. (In Russ.). doi: 10.18287/2412-7329-2015-14-2-106-112
  10. Mr. Sanхthosh Kumar. M, Dr. S.G. Gopala Krishna, Dr. Rajanna. S. Study on effect of thickness and fibre orientation on a tensile and flexural properties of a hybrid composite. Journal of Engineering Research and Applications. 2014. V. 4, Iss. 8. P. 56-66.
  11. Vorobey V.V., Markin V.B. Kontrol' kachestva izgotovleniya i tekhnologiya remonta kompozitnykh konstruktsiy [Manufacturing quality control and repair technology for composite structures]. Barnaul: OOO «MTs EOR» Publ., 2015. 310 p.
  12. Carello M., Amirth N., Airale A.G., Monti M., Romeo A. Building block approach’ for structural analysis of thermoplastic composite components for automotive applications. Applied Composite Materials. 2017. V. 24. P. 1309-1320. doi: 10.1007/s10443-017-9592-x
  13. Komarov V.A., Pavlov А.A., Pavlova S.A. Experimental and analytical determination of the elastic characteristics of layered woven composites. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2022. V. 21, no. 2. P. 65-79. (In Russ.). doi: 10.18287/2541-7533-2022-21-2-65-79
  14. GOST 25.601-80. Design calculation and strength testings. Methods of mechanical testing of polymeric composite materials test for tensile properties on plane specimens at normal, elevated and low temperatures. Moscow: Izdatel'stvo Standartov, 1980. 14 p. (In Russ.)
  15. ASTM D3039/D3039M. Standard test method for tensile properties of polymer matrix composite materials. ASTM International, 2017. 13 p.
  16. GOST P 56810-2015. Polymer composites. Test method for flexural flat samples. Moscow: Standartinform Publ., 2016. 19 p. (In Russ.)
  17. GOST 33375-2015. Polymer composites. Тest method for open-hole tension testing of specimens. Moscow: Standartinform Publ., 2016. 7 p. (In Russ.)
  18. ASTM D7137/D7137M-12. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates. ASTM International, 2012. 16 p.
  19. GOST 33495-2015. Polymer composites. Test method for compression after impact. Moscow: Standartinform Publ., 2015. 19 p. (In Russ.)
  20. ASTM D790-17. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, 2017. 12 p.
  21. Mitryaykin V.I., Bezzametnov O.N. Strength of multilayered plates with impact damage. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2022. V. 164, no. 2-3. P. 206-220. (In Russ.). doi: 10.26907/2541-7746.2022.2-3.206-220

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies