Numerical simulation of heat transfer from a swirling flow to the lateral side of the vortex tube energy separation chamber


The results of investigation of heat transfer from an intensive swirling flow of gas to the lateral side of the vortex tube energy separation chamber are presented in the paper. The distribution of the heat transfer coefficient along the energy separation chamber is specified taking into account the effect of damping of the circumferential velocity component and the effect of heating of a potential peripheral whirl.  Numerical calculations, the results of which are presented in this paper show the presence of a paraxial precessing vortex core and large-scale vortex structures - toroidal vortices periodically arranged on the periphery along the axis in the energy separation chamber. The dependence of the heat transfer coefficient on the value of the ratio of expansion of gas in the vortex tube, as well as changes in the temperature efficiency caused by increasing the energy separation chamber diameter is presented. It is shown that non-adiabacy has a greater effect on the thermodynamic efficiency of small-scale vortex tubes due to the increase of the relative fraction of the energy rejected from the lateral side in the form of heat.

About the authors

Sh. A. Piralishvili

Soloviev Rybinsk State Aviation Technical University, Rybinsk

Author for correspondence.

Doctor of Science (Engineering), Professor

Head of the Department of General and Applied Physics

Russian Federation

A. A. Sokolova

Soloviev Rybinsk State Aviation Technical University, Rybinsk


Master Student

Russian Federation


  1. Сухачёв К.И., Сёмкин Н.Д., Пияков А.В. Ускорители твёрдых тел // Физика волновых процессов и радиотехнические системы. Т. 17, № 2. С. 49-58.
  2. Postnikov B.V., Fomichev V.P., Fomin V.M. Two-Stage Railgun Pinched Plasma Armature // 11th EML Symposium, Sain-Louis, France. May 14-17.
  3. Fowler C.M., Peterson D.R., Caird R.S., Erickson D.J., Freeman B.I., King J.C. Explosive flux compression for railgun power sources // IEEE Transaction on Magnetics. V. 18, no. 1. P 64.
  4. Жуков Б.Г., Куракин Р.О., Сахаров В.А., Бобашев С.В., Поняев С.А., Резников Б.И., Розов С.И. Малогабаритный рельсовый ускоритель диэлектрических твердых тел mm-размера // Письма в Журнал технической физики. Т. 39, № 12. С. 63-70.
  5. Rashleigh S.C., Marshall R.A. Electromagnetic accelerator of macroparticles to high velocities // Journal of Applied Physics. V. 49, no. 4. P. 2540-2542. doi: 10.1063/1.325107
  6. Сухачёв К.И., Сёмкин Н.Д. Анализ возможностей катушечного электромагнитного ускорителя для разгона ферромагнитных частиц // Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королёва (национального исследовательского университета). № 3(41), ч. 1. С. 235-247.
  7. Носов Г.В. Определение параметров рельсотронов. Ч. Расчет при постоянной плотности тока // Известия Томского политехнического университета 2013. Т. 322, № 4. С. 65-69.
  8. Парселл Э. Электричество и магнетизм. М.: Наука, 439 c.



Abstract: 3507

PDF (Russian): 1701




  • There are currently no refbacks.

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies