Classification features of adaptive wing designs: history of creation, application experience and advanced developments
- Authors: Vetlitsyn M.Y.1, Sharonov N.G.1
-
Affiliations:
- Volgograd State Technical University
- Issue: Vol 23, No 4 (2024)
- Pages: 25-47
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/28062
- DOI: https://doi.org/10.18287/2541-7533-2024-23-4-25-47
- ID: 28062
Cite item
Full Text
Abstract
An overview of the developments of Russian and foreign scientists in the field of designing adaptive wings is presented. The work examines historical periods of development and improvement of methods for transforming the wing of aircraft. Classification features of adaptive wings of aircraft are identified, a detailed classification of transformable wings according to purpose (stationary and mobile) and design features (option and method of changing configuration and shape) is proposed. The results of testing finished structures and prototypes are shown. Patents for advanced adaptive wing designs are described.
About the authors
M. Yu. Vetlitsyn
Volgograd State Technical University
Author for correspondence.
Email: mikhail.vetlitsyn@mail.ru
ORCID iD: 0009-0005-2815-812X
Postgraduate Student, Lecturer at the Department of Automation of Production Processes
Russian FederationN. G. Sharonov
Volgograd State Technical University
Email: sharonov@vstu.ru
ORCID iD: 0000-0002-9894-707X
Candidate of Science (Engineering), Head of the Department of Dynamics and Strength of Machines
Russian FederationReferences
- Kashafutdinov S.T., Lushin V.N. Atlas aerodinamicheskih harakteristik krylovyh profiley [Atlas of aerodynamic characteristics of wing profiles]. Novosibirsk: SibNIA Publ., 1994. 78 p.
- Bragin N.N., Bolsunovskiy A.L., Buzoverya N.P., Gubanova M.A., Skomorohov S.I., Khozyainova G.V. Research on improving the aerodynamics of takeoff and landing wing devices of a passenger aircraft. Uchenye Zapiski TsAGI. 2013. V. 44, no. 4. P. 1-14. (In Russ.)
- Eger S.M., Matveenko A.M., Shatalov I.A. Osnovy aviatsionnoy tekhniki:uchebnik [Fundamentals of aviation technology: textbook]. Moscow: Mashinostroenie Publ., 2003. 720 p.
- Anderson J.D. Fundamentals of aerodynamics. New York: McGraw-Hill, 2011. 1106 p.
- Lee S.C., Thomas S.D., Holst T.L. A fast viscous correction method for full-potential transonic wing analysis. Proceedings 14th Congress of the International Council of the Aeronautical Sciences (September, 10-14, 1984, Toulouse, France). V. 1. P. 168-177.
- Kuprikov M.Yu. Adaptivnoe krylo [Adaptive wing]. Available at: https://old.bigenc.ru/technology_and_technique/text/4137890
- Gubsky V.V. Application of adaptive high-lift devices by an light transport airplane. Trudy MAI. 2013. No. 68. (In Russ.). Available at: https://trudymai.ru/eng/published.php?ID=41737
- Sinapius M., Monner H.P., Kintscher M., Riemenschneider J. DLR’s morphing wing activities within the European network. Procedia IUTAM. 2014. V. 10. P. 416-426. doi: 10.1016/j.piutam.2014.01.036
- Redeker G., Wichmann G., Oelker H.-Chr. Aerodynamic investigations of an adaptive airfoil for a transonic transport aircraft. Proceedings 14th Congress of the International Council of the Aeronautical Sciences (September, 10-14, 1984, Toulouse, France). V. 2. P. 868-880.
- Webber G.W., Dansby T. Wing tip devices for energy conservation and other purposes -experimental and analytical work in progress at the Lockheed-Georgia Company. Canadian Aeronautics and Space Journal. 1983. V. 29, Iss. 2. P. 105-120.
- Legkiy samolet Flyer [Flyer light aircraft]. Available at: http://www.airwar.ru/enc/law1/flyer.html#LTH
- Petrov K.P. Aerodinamika elementov letatel'nyh apparatov [Aerodynamics of aircraft elements]. Moscow: Mashinostroenie Publ., 1985. 272 p.
- Mkhoyan T., Thakrar N. R., De Breuker R., Sodja J. Design and development of a seamless smart morphing wing using distributed trailing edge camber morphing for active control. AIAA Scitech 2021 Forum (January, 11-15, 2021, Virtual/online). doi: 10.2514/6.2021-0477
- Jensen S.C., Jenney G.D., Dawson D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft. Proceedings of the 19th Digital Avionics Systems Conference (October, 07-13, 2000, Philadelphia, PA, USA). doi: 10.1109/dasc.2000.886914
- Vetlitsyn M.Yu., Vetlitsyn Yu.A., Maloletov A.V. Estimation of the operation stability of the mechatronic river unit of a uav with a digital control system. Izvestia Volgograd State Technical University. 2022. No. 1 (260). P. 53-56. (In Russ.). doi: 10.35211/1990-5297-2022-1-260-53-56
- Vetlitsyn M.Yu., Vetlitsyn Yu.A., Prokudin G.Yu., Sharonov N.G. Evaluation of the accuracy of the control system of the adaptive wing rib layout. Proceedings of the International Conference of Young Scientists and Students «Topical Problems of Mechanical Engineering» ToPME-2021 (November 30 - December 02, 2021, Moscow). Moscow: Russian Academy of Sciences Blagonravov Mechanical Engineering Research Institute Publ., 2021. P. 379-386. (In Russ.)
- Vetlitsyn M.Yu., Vetlitsyn Yu.A. Improvement of the rib control syste of the UAV adaptive wing layout. Zametki Uchenogo. 2022. No. 3-2. P. 128-133. (In Russ.)
- Granichin O.N., Khantuleva T.A. Adapting wing elements («feathers») of an airplane in a turbulent flow with a multiagent protocol. Automation and Remote Control. 2017. V. 78, Iss. 10. P. 11867-1882. doi: 10.1134/S0005117917100101
- Palubniy istrebitel' F4U Corsair [F4U Corsair naval fighter]. Available at: http://www.airwar.ru/enc/fww2/f4u.html
- Eksperimental'niy samolet Pterodactyl IV [Pterodactyl experimental aircraft IV]. Available at: http://www.airwar.ru/enc/xplane/pterodactyl4.html
- Barbarino S., Bilgen O., Ajaj R.M., Friswell M.I., Inman D.J. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. 2011. V. 22, Iss. 9. P. 823-877. doi: 10.1177/1045389X11414084
- Sofla A.Y.N., Meguid S.A., Tan K.T., Yeo W.K. Shape morphing of aircraft wing: Status and challenges. Materials and Design. 2010. V. 31, Iss. 3. P. 1284-1292. doi: 10.1016/j.matdes.2009.09.011
- Istrebitel'-bombardirovshchik Su-17 [Su-17 fighter bomber]. Available at: http://www.airwar.ru/enc/fighter/su17.html
- Mnogotselevoy istrebitel' MiG-23ML [MiG-23 ML multipurpose fighter]. Available at http://www.airwar.ru/enc/fighter/mig23ml.html
- Mnogotselevoy istrebitel'-bombardirovshchik F-111A Aardvark [F-111A Aardvark multipurpose fighter bomber]. Available at: http://www.airwar.ru/enc/fighter/f111.html
- Palubniy mnogotselevoy istrebitel' F-14A Tomcat [F-114 Tomcat naval multipurpose fighter]. Available at: http://www.airwar.ru/enc/fighter/f14.html
- Bowers P.M. Unconventional aircraft. N.Y.: Tab Books Publ., 1984. 323 p.
- Eksperimental'niy samolet AD-1 [AD-1 experimental aircraft]. Available at: http://www.airwar.ru/enc/xplane/ad1.html
- Zhitnikov E.D. Krylo s izmenyaemoy hordoy [Variable-chord wing]. Patent RF, no. 2429988, 2011. (Publ. 27.09.2011, bull. no. 27)
- Gandhi F. Variable chord morphing helicopter rotor. Patent USA, no. 8684690B2, 2014. (Publ. 01.04.2014)
- Roe R.W., Gandhi U.N. Smart material trailing edge variable chord morphing wing. Patent USA, no. 9457887B2, 2016. (Publ. 04.10.2016)
- Eksperimental'niy samolet RK (LIG-7) [RK (LIG-7) experimental aircraft]. Available at: http://www.airwar.ru/enc/xplane/rk.html
- Mikhailov Yu.S. Increase in high-lift devices efficiency of swept wing. Scientific Civil Aviation High Technologies. 2020. V. 23, no. 6. P. 101-120. (In Russ.). doi: 10.26467/2079-0619-2020-23-6-101-120
- Ryabov K. Eksperimental'niy samolet I.I. Makhonina Mak.10 / Mak.101 (Frantsiya) [I.I. Makhonin Mak.10 / Mak.101 (France) experimental aircraft]. Available at: https://topwar.ru/104295-eksperimentalnyy-samolet-ii-mahonina-mak10-mak101-franciya.html
- Vetlitsyn Yu.A., Vetlitsyn M.Yu. On the prospects for improving the design of the UAV. Sovremennaya Shkola Rossii. Voprosy Modernizatsii. 2021. No. 8-2 (37). P. 181-183. (In Russ.)
- Ajaj R.M., Flores E.I.S., Friswell M.I., Allegri G., Woods B.K.S., Isikveren, A.T., Dettmer W.G. The Zigzag wingbox for a span morphing wing. Aerospace Science and Technology. 2013. V. 28, Iss. 1. P. 364-375. doi: 10.1016/j.ast.2012.12.002
- Bishay P.L., Burg E., Akinwunmi A., Phan R., Sepulveda K. Development of a new span-morphing wing core design. Designs. 2019. V. 3, Iss. 1. doi: 10.3390/designs3010012
- Murray J., Pahle J., Thornton S., Vogus S., Frackowiak T., Mello J., Norton B. Ground and flight evaluation of a small-scale inflatable-winged aircraft. Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit (January, 14-17, 2005, Reno, NV). doi: 10.2514/6.2002-820
- Cadogan D., Sandy C., Grahne M. Development and evaluation of the Mars pathfinder inflatable airbag landing system. 49th International Astronautical Congress (September 28-October 2, 1998, Melbourne, Australia).
- Simpson A., Jacob J., Smith S. Flight control of a UAV with inflatable wings with wing warping. Proceedings of the 24th AIAA Applied Aerodynamics Conference (June, 05-08, 2006, San Francisco, California). doi: 10.2514/6.2006-2831
- Chandler J., Jacob J. Design and flight testing of a mars aircraft prototype using inflatable wings. 58th International Astronautical Congress (September, 24-28, 2007, Hyderabad, India). 2007. V. 12. P. 7966-7974.
- Ivchenko A.V., Sharonov N.G. Mekhatronnyy uzel i karkas adaptivnogo kryla. Materialy Mezhdunarodnoy Nauchno-Prakticheskoy Konferentsii «Progress Transportnykh Sredstv i Sistem» (October, 09-11, 2018, Volgograd). Volgograd: Volgograd State Technical University Publ., 2018. P. 176-177. (In Russ.)
- Fasel U., Keidel D., Baumann L., Ermanni P., Cavolina G., Eichenhofer M. Composite additive manufacturing of morphing aerospace structures. Manufacturing Letters. 2019. V. 23. P. 85-88. doi: 10.1016/j.mfglet.2019.12.004
- Jenett B., Calisch S., Cellucci D., Cramer N., Gershenfeld N., Swei S., Cheung K.C. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Robotics. 2017. V. 4, Iss. 1. P. 33-48. doi: 10.1089/soro.2016.0032
- Elzey D.M., Sofla A.Y.N, Wadley H.N.G. A bio-inspired, high-authority actuator for shape morphing structures. Proceedings of SPIE. 2003. V. 5053. doi: 10.1117/12.484745
- Kota S. System for varying a surface contour. Patent USA, no. 5971328, 1999. (Publ. 26.10.1999)
- Hogan H.J. Variable camber airfoil. Patent USA, no. 1868748, 1932. (Publ. 26.07.1932)
- Ivchenko A.V., Sharonov N., Ziatdinov R. New conceptual design of the adaptive compliant aircraft wing frame. Engineering Science and Technology, an International Journal. 2019. V. 22, Iss. 5. P. 1149-1154. doi: 10.1016/j.jestch.2019.10.004
- Miller E.J., Lokos W.A., Cruz J., Crampton G., Stephens C.A., Kota S., Ervin G., Flick P. Approach for structurally clearing an adaptive compliant trailing edge flap for flight. Available at: https://archive.org/details/NASA_NTRS_Archive_20150019388
- Pecora R., Magnifico M., Amoroso F., Lecce L., Bellucci M., Dimino I., Concilio A., Ciminello M. Structural design of an adaptive wing trailing edge for large aeroplanes. Smart Intelligent Aircraft Structures. 2016. P. 159-170. doi: 10.1007/978-3-319-22413-8_8
- Sverkhzvukovoy strategicheskiy bombardirovshchik B-70 Valkyrie [B-70 Valkyrie supersonic strategic bomber]. Available at: http://www.airwar.ru/enc/bomber/b70.html
- Abdulrahim M., Lind R. Flight testing and response characteristics of a variable gull-wing morphing aircraft. Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (August, 16-19, 2004, Providence, Rhode Island). doi: 10.2514/6.2004-5113
- Lazos B., Visser K. Aerodynamic comparison of hyper-elliptic cambered span (HECS) wings with conventional confgurations. Proceedings of the 24th AIAA Applied Aerodynamics Conference (June, 05-08, 2006, San Francisco, California). doi: 10.2514/6.2006-3469
- Amelyushkin I.A., Druzhinin O.V. Adaptivnoe krylo s profilem izmenyaemoy krivizny [Adaptive wing with a variable-camber profile]. Patent RF, no. 2777139, 2022. (Publ. 01.08.2022, bull. no. 22)
- Joo J.J., Marks C.R., Zientarski L., Culler A.J. Variable camber compliant wing-design. Proceedings of the 23rd AIAA/AHS Adaptive Structures Conference (January, 05-09, 2015, Kissimmee, Florida). doi: 10.2514/6.2015-1050
- Parancheerivilakkathil M.S., Ajaj R.M., Khan K.A. A compliant polymorphing wing for small UAVs. Chinese Journal of Aeronautics. 2020. V. 33, Iss. 10. P. 2575-2588. doi: 10.1016/j.cja.2020.03.027
- Meijering A. Design of adaptive wing sections with natural transition. PhD thesis. Aachen, 2003. 244 p.
- Gano Sh.E., Renaud J.E. Optimized unmanned aerial vehicle with wing morphing for extended range and endurance. Proceedings of the 9th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization (September, 04-06, 2002, Atlanta, Georgia). doi: 10.2514/6.2002-5668
- Gevorkyan K.S., Yudina D.O. Adaptivnoe krylo letatel'nogo apparata [Adaptive aircraft wing]. Patent RF, no. 155659, 2015. (Publ. 20.10.2015, bull. no 29.)
- Zhitnikov E.D. Krylo s izmenyaemym profilem [Variable-geometry wing]. Patent RF, no. 2330790, 2008. (Publ. 10.08.2008, bull. no. 22)
- Zheltko V.N. Krylo samoleta [Aircraft wing]. Patent RF, no. 2072942, 1997. (Publ. 10.02.1997)
- Granichin O.N., Amelin K.S., Amelina N.O. Aerodinamicheskoe krylo letatel'nogo apparata s adaptivno izmenyayushcheysya poverkhnost'yu [Aerodynamic wing of the flying apparatus with adaptive variable surface]. Patent RF, no. 2660191, 2018. (Publ. 05.07.2018, bull. no. 19)