Classification features of adaptive wing designs: history of creation, application experience and advanced developments


Cite item

Full Text

Abstract

An overview of the developments of Russian and foreign scientists in the field of designing adaptive wings is presented. The work examines historical periods of development and improvement of methods for transforming the wing of aircraft. Classification features of adaptive wings of aircraft are identified, a detailed classification of transformable wings according to purpose (stationary and mobile) and design features (option and method of changing configuration and shape) is proposed. The results of testing finished structures and prototypes are shown. Patents for advanced adaptive wing designs are described.

About the authors

M. Yu. Vetlitsyn

Volgograd State Technical University

Author for correspondence.
Email: mikhail.vetlitsyn@mail.ru
ORCID iD: 0009-0005-2815-812X

Postgraduate Student, Lecturer at the Department of Automation of Production Processes

Russian Federation

N. G. Sharonov

Volgograd State Technical University

Email: sharonov@vstu.ru
ORCID iD: 0000-0002-9894-707X

Candidate of Science (Engineering), Head of the Department of Dynamics and Strength of Machines

Russian Federation

References

  1. Kashafutdinov S.T., Lushin V.N. Atlas aerodinamicheskih harakteristik krylovyh profiley [Atlas of aerodynamic characteristics of wing profiles]. Novosibirsk: SibNIA Publ., 1994. 78 p.
  2. Bragin N.N., Bolsunovskiy A.L., Buzoverya N.P., Gubanova M.A., Skomorohov S.I., Khozyainova G.V. Research on improving the aerodynamics of takeoff and landing wing devices of a passenger aircraft. Uchenye Zapiski TsAGI. 2013. V. 44, no. 4. P. 1-14. (In Russ.)
  3. Eger S.M., Matveenko A.M., Shatalov I.A. Osnovy aviatsionnoy tekhniki:uchebnik [Fundamentals of aviation technology: textbook]. Moscow: Mashinostroenie Publ., 2003. 720 p.
  4. Anderson J.D. Fundamentals of aerodynamics. New York: McGraw-Hill, 2011. 1106 p.
  5. Lee S.C., Thomas S.D., Holst T.L. A fast viscous correction method for full-potential transonic wing analysis. Proceedings 14th Congress of the International Council of the Aeronautical Sciences (September, 10-14, 1984, Toulouse, France). V. 1. P. 168-177.
  6. Kuprikov M.Yu. Adaptivnoe krylo [Adaptive wing]. Available at: https://old.bigenc.ru/technology_and_technique/text/4137890
  7. Gubsky V.V. Application of adaptive high-lift devices by an light transport airplane. Trudy MAI. 2013. No. 68. (In Russ.). Available at: https://trudymai.ru/eng/published.php?ID=41737
  8. Sinapius M., Monner H.P., Kintscher M., Riemenschneider J. DLR’s morphing wing activities within the European network. Procedia IUTAM. 2014. V. 10. P. 416-426. doi: 10.1016/j.piutam.2014.01.036
  9. Redeker G., Wichmann G., Oelker H.-Chr. Aerodynamic investigations of an adaptive airfoil for a transonic transport aircraft. Proceedings 14th Congress of the International Council of the Aeronautical Sciences (September, 10-14, 1984, Toulouse, France). V. 2. P. 868-880.
  10. Webber G.W., Dansby T. Wing tip devices for energy conservation and other purposes -experimental and analytical work in progress at the Lockheed-Georgia Company. Canadian Aeronautics and Space Journal. 1983. V. 29, Iss. 2. P. 105-120.
  11. Legkiy samolet Flyer [Flyer light aircraft]. Available at: http://www.airwar.ru/enc/law1/flyer.html#LTH
  12. Petrov K.P. Aerodinamika elementov letatel'nyh apparatov [Aerodynamics of aircraft elements]. Moscow: Mashinostroenie Publ., 1985. 272 p.
  13. Mkhoyan T., Thakrar N. R., De Breuker R., Sodja J. Design and development of a seamless smart morphing wing using distributed trailing edge camber morphing for active control. AIAA Scitech 2021 Forum (January, 11-15, 2021, Virtual/online). doi: 10.2514/6.2021-0477
  14. Jensen S.C., Jenney G.D., Dawson D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft. Proceedings of the 19th Digital Avionics Systems Conference (October, 07-13, 2000, Philadelphia, PA, USA). doi: 10.1109/dasc.2000.886914
  15. Vetlitsyn M.Yu., Vetlitsyn Yu.A., Maloletov A.V. Estimation of the operation stability of the mechatronic river unit of a uav with a digital control system. Izvestia Volgograd State Technical University. 2022. No. 1 (260). P. 53-56. (In Russ.). doi: 10.35211/1990-5297-2022-1-260-53-56
  16. Vetlitsyn M.Yu., Vetlitsyn Yu.A., Prokudin G.Yu., Sharonov N.G. Evaluation of the accuracy of the control system of the adaptive wing rib layout. Proceedings of the International Conference of Young Scientists and Students «Topical Problems of Mechanical Engineering» ToPME-2021 (November 30 - December 02, 2021, Moscow). Moscow: Russian Academy of Sciences Blagonravov Mechanical Engineering Research Institute Publ., 2021. P. 379-386. (In Russ.)
  17. Vetlitsyn M.Yu., Vetlitsyn Yu.A. Improvement of the rib control syste of the UAV adaptive wing layout. Zametki Uchenogo. 2022. No. 3-2. P. 128-133. (In Russ.)
  18. Granichin O.N., Khantuleva T.A. Adapting wing elements («feathers») of an airplane in a turbulent flow with a multiagent protocol. Automation and Remote Control. 2017. V. 78, Iss. 10. P. 11867-1882. doi: 10.1134/S0005117917100101
  19. Palubniy istrebitel' F4U Corsair [F4U Corsair naval fighter]. Available at: http://www.airwar.ru/enc/fww2/f4u.html
  20. Eksperimental'niy samolet Pterodactyl IV [Pterodactyl experimental aircraft IV]. Available at: http://www.airwar.ru/enc/xplane/pterodactyl4.html
  21. Barbarino S., Bilgen O., Ajaj R.M., Friswell M.I., Inman D.J. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. 2011. V. 22, Iss. 9. P. 823-877. doi: 10.1177/1045389X11414084
  22. Sofla A.Y.N., Meguid S.A., Tan K.T., Yeo W.K. Shape morphing of aircraft wing: Status and challenges. Materials and Design. 2010. V. 31, Iss. 3. P. 1284-1292. doi: 10.1016/j.matdes.2009.09.011
  23. Istrebitel'-bombardirovshchik Su-17 [Su-17 fighter bomber]. Available at: http://www.airwar.ru/enc/fighter/su17.html
  24. Mnogotselevoy istrebitel' MiG-23ML [MiG-23 ML multipurpose fighter]. Available at http://www.airwar.ru/enc/fighter/mig23ml.html
  25. Mnogotselevoy istrebitel'-bombardirovshchik F-111A Aardvark [F-111A Aardvark multipurpose fighter bomber]. Available at: http://www.airwar.ru/enc/fighter/f111.html
  26. Palubniy mnogotselevoy istrebitel' F-14A Tomcat [F-114 Tomcat naval multipurpose fighter]. Available at: http://www.airwar.ru/enc/fighter/f14.html
  27. Bowers P.M. Unconventional aircraft. N.Y.: Tab Books Publ., 1984. 323 p.
  28. Eksperimental'niy samolet AD-1 [AD-1 experimental aircraft]. Available at: http://www.airwar.ru/enc/xplane/ad1.html
  29. Zhitnikov E.D. Krylo s izmenyaemoy hordoy [Variable-chord wing]. Patent RF, no. 2429988, 2011. (Publ. 27.09.2011, bull. no. 27)
  30. Gandhi F. Variable chord morphing helicopter rotor. Patent USA, no. 8684690B2, 2014. (Publ. 01.04.2014)
  31. Roe R.W., Gandhi U.N. Smart material trailing edge variable chord morphing wing. Patent USA, no. 9457887B2, 2016. (Publ. 04.10.2016)
  32. Eksperimental'niy samolet RK (LIG-7) [RK (LIG-7) experimental aircraft]. Available at: http://www.airwar.ru/enc/xplane/rk.html
  33. Mikhailov Yu.S. Increase in high-lift devices efficiency of swept wing. Scientific Civil Aviation High Technologies. 2020. V. 23, no. 6. P. 101-120. (In Russ.). doi: 10.26467/2079-0619-2020-23-6-101-120
  34. Ryabov K. Eksperimental'niy samolet I.I. Makhonina Mak.10 / Mak.101 (Frantsiya) [I.I. Makhonin Mak.10 / Mak.101 (France) experimental aircraft]. Available at: https://topwar.ru/104295-eksperimentalnyy-samolet-ii-mahonina-mak10-mak101-franciya.html
  35. Vetlitsyn Yu.A., Vetlitsyn M.Yu. On the prospects for improving the design of the UAV. Sovremennaya Shkola Rossii. Voprosy Modernizatsii. 2021. No. 8-2 (37). P. 181-183. (In Russ.)
  36. Ajaj R.M., Flores E.I.S., Friswell M.I., Allegri G., Woods B.K.S., Isikveren, A.T., Dettmer W.G. The Zigzag wingbox for a span morphing wing. Aerospace Science and Technology. 2013. V. 28, Iss. 1. P. 364-375. doi: 10.1016/j.ast.2012.12.002
  37. Bishay P.L., Burg E., Akinwunmi A., Phan R., Sepulveda K. Development of a new span-morphing wing core design. Designs. 2019. V. 3, Iss. 1. doi: 10.3390/designs3010012
  38. Murray J., Pahle J., Thornton S., Vogus S., Frackowiak T., Mello J., Norton B. Ground and flight evaluation of a small-scale inflatable-winged aircraft. Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit (January, 14-17, 2005, Reno, NV). doi: 10.2514/6.2002-820
  39. Cadogan D., Sandy C., Grahne M. Development and evaluation of the Mars pathfinder inflatable airbag landing system. 49th International Astronautical Congress (September 28-October 2, 1998, Melbourne, Australia).
  40. Simpson A., Jacob J., Smith S. Flight control of a UAV with inflatable wings with wing warping. Proceedings of the 24th AIAA Applied Aerodynamics Conference (June, 05-08, 2006, San Francisco, California). doi: 10.2514/6.2006-2831
  41. Chandler J., Jacob J. Design and flight testing of a mars aircraft prototype using inflatable wings. 58th International Astronautical Congress (September, 24-28, 2007, Hyderabad, India). 2007. V. 12. P. 7966-7974.
  42. Ivchenko A.V., Sharonov N.G. Mekhatronnyy uzel i karkas adaptivnogo kryla. Materialy Mezhdunarodnoy Nauchno-Prakticheskoy Konferentsii «Progress Transportnykh Sredstv i Sistem» (October, 09-11, 2018, Volgograd). Volgograd: Volgograd State Technical University Publ., 2018. P. 176-177. (In Russ.)
  43. Fasel U., Keidel D., Baumann L., Ermanni P., Cavolina G., Eichenhofer M. Composite additive manufacturing of morphing aerospace structures. Manufacturing Letters. 2019. V. 23. P. 85-88. doi: 10.1016/j.mfglet.2019.12.004
  44. Jenett B., Calisch S., Cellucci D., Cramer N., Gershenfeld N., Swei S., Cheung K.C. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Robotics. 2017. V. 4, Iss. 1. P. 33-48. doi: 10.1089/soro.2016.0032
  45. Elzey D.M., Sofla A.Y.N, Wadley H.N.G. A bio-inspired, high-authority actuator for shape morphing structures. Proceedings of SPIE. 2003. V. 5053. doi: 10.1117/12.484745
  46. Kota S. System for varying a surface contour. Patent USA, no. 5971328, 1999. (Publ. 26.10.1999)
  47. Hogan H.J. Variable camber airfoil. Patent USA, no. 1868748, 1932. (Publ. 26.07.1932)
  48. Ivchenko A.V., Sharonov N., Ziatdinov R. New conceptual design of the adaptive compliant aircraft wing frame. Engineering Science and Technology, an International Journal. 2019. V. 22, Iss. 5. P. 1149-1154. doi: 10.1016/j.jestch.2019.10.004
  49. Miller E.J., Lokos W.A., Cruz J., Crampton G., Stephens C.A., Kota S., Ervin G., Flick P. Approach for structurally clearing an adaptive compliant trailing edge flap for flight. Available at: https://archive.org/details/NASA_NTRS_Archive_20150019388
  50. Pecora R., Magnifico M., Amoroso F., Lecce L., Bellucci M., Dimino I., Concilio A., Ciminello M. Structural design of an adaptive wing trailing edge for large aeroplanes. Smart Intelligent Aircraft Structures. 2016. P. 159-170. doi: 10.1007/978-3-319-22413-8_8
  51. Sverkhzvukovoy strategicheskiy bombardirovshchik B-70 Valkyrie [B-70 Valkyrie supersonic strategic bomber]. Available at: http://www.airwar.ru/enc/bomber/b70.html
  52. Abdulrahim M., Lind R. Flight testing and response characteristics of a variable gull-wing morphing aircraft. Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (August, 16-19, 2004, Providence, Rhode Island). doi: 10.2514/6.2004-5113
  53. Lazos B., Visser K. Aerodynamic comparison of hyper-elliptic cambered span (HECS) wings with conventional confgurations. Proceedings of the 24th AIAA Applied Aerodynamics Conference (June, 05-08, 2006, San Francisco, California). doi: 10.2514/6.2006-3469
  54. Amelyushkin I.A., Druzhinin O.V. Adaptivnoe krylo s profilem izmenyaemoy krivizny [Adaptive wing with a variable-camber profile]. Patent RF, no. 2777139, 2022. (Publ. 01.08.2022, bull. no. 22)
  55. Joo J.J., Marks C.R., Zientarski L., Culler A.J. Variable camber compliant wing-design. Proceedings of the 23rd AIAA/AHS Adaptive Structures Conference (January, 05-09, 2015, Kissimmee, Florida). doi: 10.2514/6.2015-1050
  56. Parancheerivilakkathil M.S., Ajaj R.M., Khan K.A. A compliant polymorphing wing for small UAVs. Chinese Journal of Aeronautics. 2020. V. 33, Iss. 10. P. 2575-2588. doi: 10.1016/j.cja.2020.03.027
  57. Meijering A. Design of adaptive wing sections with natural transition. PhD thesis. Aachen, 2003. 244 p.
  58. Gano Sh.E., Renaud J.E. Optimized unmanned aerial vehicle with wing morphing for extended range and endurance. Proceedings of the 9th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization (September, 04-06, 2002, Atlanta, Georgia). doi: 10.2514/6.2002-5668
  59. Gevorkyan K.S., Yudina D.O. Adaptivnoe krylo letatel'nogo apparata [Adaptive aircraft wing]. Patent RF, no. 155659, 2015. (Publ. 20.10.2015, bull. no 29.)
  60. Zhitnikov E.D. Krylo s izmenyaemym profilem [Variable-geometry wing]. Patent RF, no. 2330790, 2008. (Publ. 10.08.2008, bull. no. 22)
  61. Zheltko V.N. Krylo samoleta [Aircraft wing]. Patent RF, no. 2072942, 1997. (Publ. 10.02.1997)
  62. Granichin O.N., Amelin K.S., Amelina N.O. Aerodinamicheskoe krylo letatel'nogo apparata s adaptivno izmenyayushcheysya poverkhnost'yu [Aerodynamic wing of the flying apparatus with adaptive variable surface]. Patent RF, no. 2660191, 2018. (Publ. 05.07.2018, bull. no. 19)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies