Application of gas analyzers for the control of fuel in the air environment of rocket and space industry enterprises


Cite item

Abstract

The presented work shows the necessity of organization of individual instrumental control of the content of rocket fuel and its products in the air of rocket-space industry enterprises. No accurate analysis of gas analyzers presented on the Russian market, providing individual instrumental control of concentrations of heptyl and its derivatives in the workplace air is available. Therefore, the task of express, automatic, selective and simultaneous monitoring of heptyl vapors and derivatives of its transformation in the air of industrial premises by one instrument and replacing the imported gas analyzers remains urgent. It is shown that the solution of the posed problem is possible on the basis of the optical absorption method. The requirements to be met by the gas analyzer are formulated. Approximate wavelengths at which simultaneous measurement of concentrations of heptyl and its derivatives in an air sample is possible have been determined. The ways of realization of individual gas analyzers having small mass-size characteristics are outlined. Structural schemes for infra-red gas analyzers have been proposed: multi-channel; single-channel (with frequency modulation of radiation). Tasks for further research are formulated.

About the authors

A. B. Bulgakov

Amur State University

Author for correspondence.
Email: bgd_2020@mail.ru

Candidate of Science (Engineering), Associate Professor of the Department of Life Safety

Russian Federation

S. P. Vashchuk

Samara National Research University

Email: amurgermovvod@mail.ru

Candidate of Science (Engineering), Associate Professor of the Department of Ecology and Life Safety

Russian Federation

R. A. Panshin

Samara National Research University

Email: panshinroman2016@yandex.ru

Postgraduate Student

Russian Federation

References

  1. O toksichnosti geptila / pod red. L.S. Yaguzhinskogo [On the toxicity of heptyl / ed. by L.S. Yaguzhinsky]. Moscow: IPCP RAS Publ., 2014. 128 p.
  2. Kolesnikov S.V. Okislenie nesimmetrichnogo dimetilgidrazina (geptila) i identifikatsiya produktov ego prevrashcheniya pri prolivakh [Oxidation of anisometric dimethyl hydrazine (heptyl) and identification of the products of its transformation in case of spillage]. Novosibirsk: SibAK Publ., 2014. 110 p.
  3. Khmeleva M.V. Ekologicheskie aspekty khimicheskoy aktivnosti nesimmetrichnogo dimetilgidrazina v inertnoy srede, v prisutstvii kisloroda, vody, atmosfernogo vozdukha i pri vozdeystvii elektricheskogo razryada. Dis. … kand. khim. nauk [Ecological aspects of chemical activity of asymmetrical dimethylhydrazine in inert atmosphere, in the presence of oxygen, water, atmospheric air and under the influence of electric discharge: dissertation of candidate of chemical sciences]. Nizhny Novgorod, 2015. 145 p.
  4. Sistema distantsionnogo kontrolya vozdushnoy sredy SDKVS-1M [СДКВС-1М system of air remote monitoring]. Available at: http://www.analitpribor-smolensk.ru/products/spec_tehnika/sdkvs_1m/
  5. DART datchik-gazoanalizator komponentov raketnogo topliva (KRT) statsionarnyy [DART stationary gas analyzer sensor of rocket fuel]. Available at: https://www.gazoanalizators.ru/DART.html
  6. Bulgakov A.B., Averyanov V.N. Ways of improving optical absorption gas analyzers for solving tasks in the field of technospheric safety. Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii «Prirodoobustroystvo i Stroitel'stvo: Nauka, Obrazovanie, Praktika» (November, 08, 2017, Blagoveshchensk). Blagoveshchensk: DalGAU Publ., 2017. P. 32-38. (In Russ.)
  7. Godzhaeva A.R. Sintez polielektrolita iz epikhlorgidrina i dimetilamina i ego primenenie pri ochistke stochnykh vod. Dis. … kand. khim. nauk [Synthesis of polyelectrolyte from epichlorohydrin and dimethylamine and its application in wastewater treatment: dissertation of candidate of chemical sciences]. Ufa, 2014. 130 p.
  8. Nabiev Sh.Sh., Stavrovskii D.B., Palkina L.A., Zbarskii V.L., Yudin N.V., Golubeva E.N., Vaks V.L., Domracheva E.G., Sobakinskaya E.A., Chernyaeva M.B. Spectrochemical features of certain brisant explosives in the vapor state. Atmospheric and Oceanic Optics. 2013. V. 26, Iss. 5. P. 377-390. doi: 10.1134/S1024856013050126
  9. Bulgakov A.B., Kornievskaya S.A. Study of the possibility of developing a gas analyzer for the control of heptil and its transformation derivatives in the air of the working zone based on the optical absorption method of gas analysis. Vestnik Amurskogo Gosudarstvennogo Universiteta. Seriya: Estestvennye i Ekonomicheskie Nauki. 2020. No. 89. P. 128-134. (In Russ.). doi: 10.22250/jasu.28
  10. Ul'yanovskiy N.V. Opredelenie 1,1-dimetilgidrazina i produktov ego transformatsii metodami tandemnoy khromatomass-spektrometrii. Dis. … kand. khim. nauk [Determination of 1,1-dimethylhydrazine and products of its transformation by tandem chromatography-mass spectrometry methods: dissertation of candidate of chemical sciences]. Arkhangelsk, 2015. 148 p.
  11. Bulgakov A.B. Opticheskiy gazoanalizator [Optical gas analyzer]. Patent RF no. 1494712, 1994. (Publ. 15.12.1994)
  12. Tunable detectors (FPI detectors). Available at: https://www.infratec.eu/sensor-division/fpi-detectors/

Copyright (c) 2021 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies