Solving the problem of stabilizing program deployment of an orbital tether system taking into account limitations on the rotary motion of the tip body
- Authors: 1 11, 1 11
-
Affiliations:
- Samara State Aerospace University
- Issue: Vol 9, No 1 (2010)
- Pages: 47-57
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/863
- DOI: https://doi.org/10.18287/2541-7533-2010-0-1(21)-47-57
- ID: 863
Cite item
Full Text
Abstract
The paper deals with the problem of stabilizing programme deployment of a space tether system with regard to limitations on the tip body rotary motion. The method proposed is based on direct calculation of the parameters of an optimal regulator using a non-linear model of tether system motion. A criterion of optimality is proposed that makes it possible to take into account the limitations specified when solving the stabilization problem. An example of calculating optimal feedback coefficients is given and the approach described is shown to enable considerable improvement of transition processes that arise in controlling the tether system deployment.
About the authors
1 1
Samara State Aerospace University
Author for correspondence.
Email: sadohina@ssau.ru
Russian Federation
1 1
Samara State Aerospace University
Email: sadohina@ssau.ru
Russian Federation
References
- Белецкий В. В., Левин Е. М. Динамика космических тросовых систем. – М.: Наука, 1990. – 336 с.
- A European Barberpole Mechanism for Space Tether Deployment // Menon C. and others. – IAC-05-C2.P.02. – The Netherlands. - 2005. – 13 p.
- Летов А. М. Динамика полёта и управление. – М.: Наука, 1969. – 360 с.
- Evolutionary Computat ion of the Deployment Trajectories with Application to YES2 //Williams P. and others. –AAS 07 – 192. – The Netherlands. -2007. – 21 p.
- Adapt ive neural cont rol of the deployment procedure for tether-assisted re-entry // GlebelH. and others. –Aerospace Science and Technology. – 2004. – 8. – pp. 73-80.
- Пшеничный Б. Н., Данилин Ю. М. Численные методы в экстремальных задачах. – М.: Наука, 1975. – 320 с.
- Соболь И. М. Численные методы Монте-Карло. - М.: Наука, 1973. – 311 с.
- Васильев Ф. П. Численные методы решения экстремальных задач. – М.: Наука, 1988. – 198 c.