Mathematical model of the “tank – nozzle” cooling system


Cite item

Full Text

Abstract

The task of increasing heat transfer of hydrocarbon fuel in the channels of cooling systems of liquid rocket engines is a matter of current interest. The article discusses the results of developing a mathematical model of an engine cooling system operating on super-circulation of fuel between the tank and the nozzle. The model makes it possible to determine the conditions under which the ratio of kerosene circulation in the nozzle cooling circuit would ensure that the selected material is used as the nozzle wall material, to find the minimum amount of kerosene in the tank required for cooling the nozzle by the proposed method.

About the authors

V. V. Shalay

Omsk State Technical University

Author for correspondence.
Email: info@omgtu.ru

Doctor of Science (Engineering), Professor,
Head of Oil and Gas Engineering, Standardization and Metrology Department, President of OmSTU

Russian Federation

K. V. Shcherban

Omsk State Technical University

Email: sherban.kirill@gmail.com

Research Fellow, Laboratory of Life Support Systems for Inhabited and Uninhabited Objects

Russian Federation

References

  1. Balmina R.V., Gubanov A.A., Ivan’kin M.A., Lapinskiy D.A. The state and prospects for the development of hypersonic weapons. Tekhnicheskaya Informatsiya. 2012. No. 1-2 (1821-1822). P. 1-72. (In Russ.)
  2. Laptev A.G., Nikolaev N.A., Basharov M.M. Metody intensifikatsii i modelirovaniya teplomassoobmennykh protsessov [Methods of intensification and modeling of heat and mass transfer processes]. Moscow: Teplotekhnik Publ., 2011. 335 p.
  3. Sukhov E.V. Sovershenstvovanie konstruktsiy i metoda rascheta kompaktnykh spiral'no-zmeevikovykh uzlov okhlazhdeniya kompressornykh agregatov. Dis. … kand. tekhn. nauk [Improvement of designs and calculation method for compact spiral-coil cooling systems of compressor units]. Omsk, 2012. 196 p.
  4. Misra A. Composite materials for aerospace propulsion related to air and space transportation. In book: «Lightweight Composite Structures in Transport». Cambridge: Woodhead Publishing, 2016. P. 305-327.
  5. Hiroyasu H., Arai M. Structures of fuel spray in diesel engines. SAE Technical Paper Series. 1990. doi: 10.4271/900475
  6. Chen Yu., Wang Yu., Bao Z., Zhang Q., Li X.-Y. Numerical investigation of flow distribution and heat transfer of hydrocarbon fuel in regenerative cooling panel. Applied Thermal Engineering. 2016. V. 98. P. 628-635. doi: 10.1016/j.applthermaleng.2015.12.088
  7. Moiseeva N.P., Pokhodun A.I. Investigation of the non-uniqueness and subrange in consistencies of ITS-90 using platinum resistance thermometers in the 0-961.78 °C range. Temperature: Its Measurement s and Control in Science and Industry. 1992. V. 6. P. 187-191.
  8. Mikhaylov A.M. Steam reforming of hydrocarbons as a mеthod of chemical heat recovery. St. Petersburg State Polytechnical University Journal. 2013. No. 3 (178). P. 95-100. (In Russ.)
  9. Dorofeev A.A. Osnovy teorii teplovykh raketnykh dvigateley: teoriya, raschet i proektirovanie [Fundamentals of the theory of thermal rocket engines: theory, calculation and design]. Moscow: Bauman Moscow State Technical University Publ., 2014. 571 p.
  10. Myakochin A.S., Yanovskiy L.S. Obrazovanie otlozheniy v toplivnykh sistemakh silovykh ustanovok i metody ikh podavleniya [Formation of deposits in fuel systems of power plants and methods for their suppression]. Moscow: Moscow Aviation Institute Publ., 2001. 223 p.
  11. Kutepov A.M., Sterman L.S., Styushin N.G. Gidrodinamika i teploobmen pri paroobrazovanii [Hydrodynamics and heat transfer during vaporization]. Moscow: Vysshaya Shkola Publ., 1986. 448 p.
  12. Chernov G.I., Shcherban K.V. Matematicheskaya model' teplootdachi pri techenii uglevodorodnogo topliva v kanalakh sistemy okhlazhdeniya ZhRD i obosnovanie vozmozhnosti ee intensifikatsii. Materialy XI Vserossiyskoy nauchnoy konferentsii «Problemy razrabotki, izgotovleniya i ekspluatatsii raketno-kosmicheskoy tekhniki i podgotovki inzhenernykh kadrov dlya aviakosmicheskoy otrasli» (May, 30-31, 2017, Omsk). Omsk: Omsk State Technical University Publ., 2017. P. 114-127. (In Russ.)
  13. Yusha V.L., Chernov G.I., Shcherban K.V. Vliyanie raskhoda i skhemy dvizheniya uglevodorodnogo topliva v kanalakh sistemy okhlazhdeniya sopla i ego raskhoda na temperaturnye polya v razlichnykh elementakh sopla. Materialy XII Vserossiyskoy nauchnoy konferentsii «Problemy razrabotki, izgotovleniya i ekspluatatsii raketno-kosmicheskoy tekhniki i podgotovki inzhenernykh kadrov dlya aviakosmicheskoy otrasli» (May, 30, 2018, Omsk). Omsk: Omsk State Technical University Publ., 2018. P. 133-147. (In Russ.)
  14. Yusha V.L., Chernov G.I., Shcherban K.V. Design of a heat transfer intensification system for hydrocarbon fuel in the cooling channels of the liquid rocket engine. Proceedings of Higher Educational Institutions. Маchine Building. 2018. No. 8 (701). P. 86-91. (In Russ.). doi: 10.18698/0536-1044-2018-8-86-91
  15. Shalay V.V., Shcherban K.V. Design of modernized test bench for analysis of cooling systems with intensification under inertial forces field. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2019. V. 3, no. 1. P. 73-81. (In Russ.). doi: 10.25206/2588-0373-2019-3-1-73-81

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 VESTNIK of Samara University. Aerospace and Mechanical Engineering

License URL: https://journals.ssau.ru/index.php/vestnik/about/editorialPolicies#custom-2

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies