Optimizing the process of changing spacecraft orbital parameters by using a spinning electrodynamic tether sytem
- Authors: Lu H.1, Wang C.2, Zabolotnov Y.M.1
-
Affiliations:
- Samara National Research University
- Northwestern Polytechnical University
- Issue: Vol 19, No 1 (2020)
- Pages: 64-77
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/7771
- DOI: https://doi.org/10.18287/2541-7533-2020-19-1-64-77
- ID: 7771
Cite item
Full Text
Abstract
The paper considers parametric optimization of the process of changing orbital parameters by using a spinning electrodynamic tether system. Changes in the semi-major axis and eccentricity are taken as the two major goals, and two control laws are proposed accordingly. Current is regulated according to the instantaneous position of the conductive tether, which allows ensuring the calculated direction of the Lorentz force produced by the interaction of the conductive tether with the Earth’s magnetic field. A combined control scheme for simultaneous changes in the semi-major axis and eccentricity is proposed. The parameters of control laws are optimized on the basis of the Nelder-Mead method by using different objective functions and constraints. It is also shown that, by using the criteria of quick response and minimum impulse, we obtain optimal solutions corresponding to the boundary values of the selected parameters. Therefore, a convolution of these criteria is proposed as a compromise, which ensures a specified change in the orbital parameters of the system mass center.
About the authors
Hongshi Lu
Samara National Research University
Author for correspondence.
Email: LuHSPeter@yandex.ru
ORCID iD: 0000-0003-4695-3424
Postgraduate Student of the Department of Software Systems
Russian FederationChangqing Wang
Northwestern Polytechnical University
Email: wangcq@mail.ru
ORCID iD: 0000-0002-1358-7731
PhD, Associate Professor
Taiwan, Province of ChinaYu. M. Zabolotnov
Samara National Research University
Email: yumz@yandex.ru
ORCID iD: 0000-0002-0409-3107
Doctor of Science (Engineering), Professor,
Professor of the Department of Software Systems
References
- Van Pelt M. Space tethers and space elevators. Springer Science & Business Media, 2009. 215 p.
- Levin E.M. Dynamic analysis of space tether missions. Univelt Incorporated, 2007. 453 p.
- Gou X.-W., Li A.-J., Tian H.-C., Wang C.-Q., Lu H.-S. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits. Acta Astronautica. 2018. V. 147. P. 383-392. doi: 10.1016/j.actaastro.2018.03.005
- Tyc G., Vigneron F., Jablonski A., Han R., Modi V., Misra A. Flight dynamics results from the OEDIPUS-C tether mission. Astrodynamics Conference. 1996. P. 39-50. doi: 10.2514/6.1996-3573
- Lorenzini E.C., Cosmo M.L., Kaiser M., Bangham M.E., Vonderwell D.J., Johnson L. Mission analysis of spinning systems for transfers from low orbits to geostationary. Journal of Spacecraft and Rockets. 2000. V. 37, Iss. 2. P. 165-172. doi: 10.2514/2.3562
- Hoyt R. Moon & Mars orbiting spinning tether transport. NASA: Final Report on NASA Institute for Advanced Concepts, Contract 07600-034, 2001.
- Voevodin P.S., Zabolotnov Yu.M. Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite. Matematicheskoe Modelirovanie. 2017. V. 29, no. 6. P. 21-34. (In Russ.)
- Kluever C.A. Space flight dynamics. John Wiley & Sons, 2018. 562 p.
- Beletskiy V.V., Levin E.M. Dinamika kosmicheskikh trosovykh system [Dynamics of space tether systems]. Moscow: Nauka Publ., 1990. 336 p.
- Voevodin P.S., Zabolotnov Yu.M. Stabilizing the motion of a low-orbit electrodynamic tether system. Journal of Computer and Systems Sciences International. 2019. V. 58, Iss. 2. P. 270-285. doi: 10.1134/S1064230719020175
- Nelder J.A., Mead R. Simplex method for function minimization. The Computer Journal. 1965. V. 7, Iss. 4. P. 308-313. doi: 10.1093/comjnl/7.4.308
- Boyd S., Vandenberghe L. Convex optimization. Cambridge University Press, 2004. 716 p.