Algorithm for predicting the vibrational state of a turbine rotor using machine learning


Cite item

Full Text

Abstract

A machine learning algorithm has been developed to solve the problem of predicting a vibrational state in order to improve the turbine rotor assembly processes using its digital twin. The digital twin of the rotor includes a parametric 3D model specially created in the CAD module of the NX program and a design project in the ANSYS system in which the working conditions of the rotor are simulated. The parameters of vibration acceleration and the reaction force of the rotor supports at critical speeds depending on geometric errors were calculated. To reduce the complexity of the calculations, neural network architectures were chosen to predict the parameters of the vibrational state depending on the geometric errors of the rotors. The novelty of the work lies in the creation and use of the original numerical model of balancing, taking into account the rotor manufacturing tolerances.

About the authors

M. A. Bolotov

Samara National Research University

Author for correspondence.
Email: maikl.bol@gmail.com
ORCID iD: 0000-0003-2653-0782

Candidate of Science (Engineering),
Associate Professor of the Department of Engine Production Technology

Russian Federation

V. A. Pechenin

Samara National Research University

Email: vadim.pechenin2011@yandex.ru
ORCID iD: 0000-0003-4961-7338

Candidate of Science (Engineering),
Associate Professor of the Department of Engine Production Technology

Russian Federation

E. J. Pechenina

Samara National Research University

Email: ek-ko@list.ru

Postgraduate student of the Department of Engine Production Technology

Russian Federation

N. V. Ruzanov

Samara National Research University

Email: kinform_@mail.ru
ORCID iD: 0000-0001-8086-0884

Lead Programmer of the Department of Engine Production Technology

Russian Federation

References

  1. Levit M.E., Ryzhenkov V.M. Balansirovka detaley i uzlov [Balancing of parts and components]. Moscow: Mashinostroenie Publ., 1986. 248 p.
  2. Deepthikumar M.B., Sekhar A.S., Srikanthan M.R. Modal balancing of flexible rotors with bow and distributed unbalance. Journal of Sound and Vibration. 2013. V. 332, Iss. 24. P. 6216-6233. doi: 10.1016/j.jsv.2013.04.043
  3. Kaneko Y., Kanki H., Kawashita R. Steam turbine rotor design and rotor dynamics analysis. Advances in Steam Turbines for Modern Power Plants. 2017. P. 127-151. doi: 10.1016/B978-0-08-100314-5.00007-5
  4. Wenhui X., Yushu C., Yougang T. Analysis of motion stability of the flexible rotor – bearing system with two unbalanced disks. Journal of Sound and Vibration. 2008. V. 310, Iss. 1-2. P. 381-393. doi: 10.1016/j.jsv.2007.08.001
  5. Jalan Arun Kr., Mohanty A.R. Model based fault diagnosis of a rotor – bearing system for
  6. misalignment and unbalance under steady – state condition. Journal of Sound and Vibration. 2009. V. 327, Iss. 3-5. P. 604-622. doi: 10.1016/j.jsv.2009.07.014
  7. Zakharov O.V., Brzhozovskiy B.M., Pogorazdov V.V. Setup of centerless superfinishing machines on the basis of numerical simulation and optimization. Vestnik Mashinostroeniya. 2003. No. 12. P. 48-50. (In Russ.)
  8. Mahfoud J., Hagopian J.Der., Levecque N., Steffen V. Experimental model to control and monitor rotating machines. Mechanism and Machine Theory. 2009. V. 44, Iss. 4. P. 761-771. doi: 10.1016/j.mechmachtheory.2008.04.009
  9. Guo J., Hong J., Yang Z., Wang Y. A tolerance analysis method for rotating machinery. Procedia CIRP. 2013. V. 10. P. 77-83. doi: 10.1016/j.procir.2013.08.015
  10. Zakharov O.V. Management of accuracy of centerless grinding by the statistical methods. Mekhatronika, Avtomatizatsiya, Upravlenie. 2009. No. 9. P. 32-35. (In Russ.)
  11. Pechenin V.A., Rusanov N.V., Bolotov M.A. Model and software module for predicting uncertainties of coordinate measurements using the NX OPEN API. Journal of Physics: Conference Series. 2018. V. 1096. doi: 10.1088/1742-6596/1096/1/012162
  12. Bondarchuk P.V. Prochnost' pnevmo- i gidromashin: elektron. ucheb. posobie [Strength of pneumatic and hydraulic machines]. Samara: Samara State Aerospace University Publ., 2013. 195 p.
  13. Medvedev V.S., Potemkin V.G. Neyronnye seti. MATLAB 6 [Neural networks. MATLAB 6]. Moscow: DIALOG-MIFI Publ., 2002. 496 p.
  14. Vasserman P.D. Advanced methods in neural computing. New York: Van Nostrand Reinhold Publ., 1993. 255 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 VESTNIK of Samara University. Aerospace and Mechanical Engineering

License URL: https://journals.ssau.ru/index.php/vestnik/about/editorialPolicies#custom-2

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies