Algorithm for predicting the vibrational state of a turbine rotor using machine learning
- Authors: Bolotov M.A.1, Pechenin V.A.1, Pechenina E.J.1, Ruzanov N.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 19, No 1 (2020)
- Pages: 18-27
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/7767
- DOI: https://doi.org/10.18287/2541-7533-2020-19-1-18-27
- ID: 7767
Cite item
Full Text
Abstract
A machine learning algorithm has been developed to solve the problem of predicting a vibrational state in order to improve the turbine rotor assembly processes using its digital twin. The digital twin of the rotor includes a parametric 3D model specially created in the CAD module of the NX program and a design project in the ANSYS system in which the working conditions of the rotor are simulated. The parameters of vibration acceleration and the reaction force of the rotor supports at critical speeds depending on geometric errors were calculated. To reduce the complexity of the calculations, neural network architectures were chosen to predict the parameters of the vibrational state depending on the geometric errors of the rotors. The novelty of the work lies in the creation and use of the original numerical model of balancing, taking into account the rotor manufacturing tolerances.
About the authors
M. A. Bolotov
Samara National Research University
Author for correspondence.
Email: maikl.bol@gmail.com
ORCID iD: 0000-0003-2653-0782
Candidate of Science (Engineering),
Associate Professor of the Department of Engine Production Technology
V. A. Pechenin
Samara National Research University
Email: vadim.pechenin2011@yandex.ru
ORCID iD: 0000-0003-4961-7338
Candidate of Science (Engineering),
Associate Professor of the Department of Engine Production Technology
E. J. Pechenina
Samara National Research University
Email: ek-ko@list.ru
Postgraduate student of the Department of Engine Production Technology
Russian FederationN. V. Ruzanov
Samara National Research University
Email: kinform_@mail.ru
ORCID iD: 0000-0001-8086-0884
Lead Programmer of the Department of Engine Production Technology
Russian FederationReferences
- Levit M.E., Ryzhenkov V.M. Balansirovka detaley i uzlov [Balancing of parts and components]. Moscow: Mashinostroenie Publ., 1986. 248 p.
- Deepthikumar M.B., Sekhar A.S., Srikanthan M.R. Modal balancing of flexible rotors with bow and distributed unbalance. Journal of Sound and Vibration. 2013. V. 332, Iss. 24. P. 6216-6233. doi: 10.1016/j.jsv.2013.04.043
- Kaneko Y., Kanki H., Kawashita R. Steam turbine rotor design and rotor dynamics analysis. Advances in Steam Turbines for Modern Power Plants. 2017. P. 127-151. doi: 10.1016/B978-0-08-100314-5.00007-5
- Wenhui X., Yushu C., Yougang T. Analysis of motion stability of the flexible rotor – bearing system with two unbalanced disks. Journal of Sound and Vibration. 2008. V. 310, Iss. 1-2. P. 381-393. doi: 10.1016/j.jsv.2007.08.001
- Jalan Arun Kr., Mohanty A.R. Model based fault diagnosis of a rotor – bearing system for
- misalignment and unbalance under steady – state condition. Journal of Sound and Vibration. 2009. V. 327, Iss. 3-5. P. 604-622. doi: 10.1016/j.jsv.2009.07.014
- Zakharov O.V., Brzhozovskiy B.M., Pogorazdov V.V. Setup of centerless superfinishing machines on the basis of numerical simulation and optimization. Vestnik Mashinostroeniya. 2003. No. 12. P. 48-50. (In Russ.)
- Mahfoud J., Hagopian J.Der., Levecque N., Steffen V. Experimental model to control and monitor rotating machines. Mechanism and Machine Theory. 2009. V. 44, Iss. 4. P. 761-771. doi: 10.1016/j.mechmachtheory.2008.04.009
- Guo J., Hong J., Yang Z., Wang Y. A tolerance analysis method for rotating machinery. Procedia CIRP. 2013. V. 10. P. 77-83. doi: 10.1016/j.procir.2013.08.015
- Zakharov O.V. Management of accuracy of centerless grinding by the statistical methods. Mekhatronika, Avtomatizatsiya, Upravlenie. 2009. No. 9. P. 32-35. (In Russ.)
- Pechenin V.A., Rusanov N.V., Bolotov M.A. Model and software module for predicting uncertainties of coordinate measurements using the NX OPEN API. Journal of Physics: Conference Series. 2018. V. 1096. doi: 10.1088/1742-6596/1096/1/012162
- Bondarchuk P.V. Prochnost' pnevmo- i gidromashin: elektron. ucheb. posobie [Strength of pneumatic and hydraulic machines]. Samara: Samara State Aerospace University Publ., 2013. 195 p.
- Medvedev V.S., Potemkin V.G. Neyronnye seti. MATLAB 6 [Neural networks. MATLAB 6]. Moscow: DIALOG-MIFI Publ., 2002. 496 p.
- Vasserman P.D. Advanced methods in neural computing. New York: Van Nostrand Reinhold Publ., 1993. 255 p.