Improvement of fretting wear resistance of blade root made of polymer composite material


Cite item

Full Text

Abstract

Polymer composite materials (PCM) are being increasingly used in aircraft engine industry.  Development of PCM fan blade manufacturing technology that meets all the necessary strength requirements is an important task in creating Russian-made latest-generation engines. One of the problems to be faced is the wear of the blade root caused by cyclic micro-displacements in the interlock under the action of external forces. There are several engineering solutions to control surface wear of blade roots made of PCM that can basically be divided into three groups: manufacture of metal roots and the use of known methods of metal fretting prevention, use of replaceable special inserts placed between the contact surfaces of the root and the disk slot, application of elastic and damping elements. In this paper, we consider another method of controlling wear, the principal feature of which is stitching the blade pre-form with aramid thread that forms a layer with higher wear resistance on the root surface. In order to verify the efficiency of the proposed approach, model blades were made and tests were carried out on an electrodynamic shaker.

About the authors

T. D. Karimbayev

Central Institute of Aviation Motors

Author for correspondence.
Email: karimbayev@ciam.ru

Doctor of Science (Engineering),
Head of the Department of Strength of Composite Materials

Russian Federation

D. V. Afanasiev

Central Institute of Aviation Motors

Email: afanasiev@rtc.ciam.ru

Head of Sector 20602, Department of Strength of Composite Materials

Russian Federation

D. V. Matyukhin

Central Institute of Aviation Motors

Email: matyukhin@rtc.ciam.ru

Lead Engineer, Department of Strength of Composite Materials

Russian Federation

M. A. Orlov

Bauman Moscow State Technical University

Email: maksim.orlov@emtc.ru

Head of Laboratory, Interdisciplinary Engineering Center of Composite Materials

Russian Federation

References

  1. Waterhous R.B. Fretting corrosion. Oxford: Pergamon Press, 1972. 253 p.
  2. Filimonov G.N., Balatskiy L.T. Fretting v soedineniyakh sudovykh detaley [Fretting in connections of ship components]. Leningrad: Sudostroenie Publ., 1973. 296 p.
  3. Golego N.L., Alyab'ev A.Ya., Shevelya V.V. Fretting-korroziya metallov [Fretting corrosion of metals]. Kiev: Tekhnika Publ., 1974. 272 p.
  4. Petukhov A.N. Metod otsenki predela vynoslivosti detaley pri fretting-korrozii. V sb.: «Problemy prochnosti i dinamiki v dvigatelestroenii». Vyp 3. Moscow: TsIAM Publ., 1985. P. 225-238. (In Russ.)
  5. Petukhov A.N. Soprotivlenie ustalosti detaley GTD [Fatigue resistance of gas turbine engine components]. Moscow: Mashinostroenie Publ., 1993. 232 p.
  6. Petukhov A.N. Fretting-corrosion and fretting-fatique in low-moving joinst. Vestnik of the Samara State Aerospace University. 2006. No. 2 (10), part 1. P. 115-120. (In Russ.)
  7. Goryunov V.N., Grinberg P.B., Tarasov E.E., Poleshchenko K.N. Influence of superficial updating on materials’ fretting constantcy of power installations and gazturbine engines. Herald of Omsk University. 2012. No. 2 (64). P. 241-244. (In Russ.)
  8. Solovyov A.A. Firmness increase to deterioration shovels GTD the method of laser processing . Vestnik SibADI. 2010. No. 4 (18). P. 14-17. (In Russ.)
  9. Smyslov A.M., Selivanov K.S. Development and research of technological methods for improving fretting wear resistance of blades made of titanium alloys. Vestnik UGATU. 2007. V. 9, no. 1 (19). P. 77-83. (In Russ.)
  10. Kray N.J., Finn S.R., Baehmann P.L., Shim D.-J., Gemeinhardt G.C. Attachment of composite article. Patent no. US9777579B2. (Publ. 2017.10.03)
  11. Kray J.N., Gemeinhardt G.C., Jadhav P.K. Klei D.E., Nandula Ph., Subramanian S. Composite compressor blade and method of assembling. Patent no. US20160130955A1. (Publ. 2016.05.12)
  12. Blanchard S.P.G., Illand H., Renon G. J.-C. R., Roussille C. Composite material turbomachine blade with a reinforced root. Patent no. US20100189562Al. (Publ. 2010.07.29)
  13. Liotta G.C., Garcia-Crespo A. Composite turbine bucket assembly. Patent no. US8727730B2. (Publ. 2014.05.20)
  14. Kray N.J., Li Q. Composite blade root stress reducing shim. Patent no. US20160333889A1. (Publ. 2016.11.17)
  15. Li Q., Kray N.J., Finn S.R. Composite airfoil metal patch. Patent no. US20160341052A1. (Publ. 2016.11.24)
  16. Cairo R.R., Parolini J.R., McConnell Delvaux J. Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface. Patent no. US9500083B2. (Publ. 2016.11.22)
  17. Cairo R.R. Apparatus and method for reducing wear in disk lugs. Patent no. US8282356B2. (Publ. 2012.10.09)
  18. Care I.C.D., Jevons M.P. Retainer plate. Patent no. US9803648B2. (Publ. 2017.10.31)
  19. Radomski S.A. Retention device for a composite blade of a gas turbine engine. Patent no. US9039379B2. (Publ. 2015.05.26)
  20. Mattheij P., Gliesche K., Feltin D. Tailored fiber placement-mechanical properties and applications. Journal of Reinforced Plastics and Composites. 1998. V. 17, Iss. 9. P. 774-786. doi: 10.1177/073168449801700901
  21. Grelin H. Sposob izgotovleniya preformy [Method for manufacturing a preform]. Patent RF, no. 2609168, 2017. (Publ. 30.01.2017, bull. no. 4)
  22. Karimbaev T.D., Luppov A.A., Afanas'ev D.V. Carbon fiber (CFRP) fan blades for advanced engines. Dvigatel’. 2011. No. 6 (78). P. 4-9. (In Russ.)
  23. Luong M.P. Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design. V. 158, Iss. 2-3. P. 363-376. doi: 10.1016/0029-5493(95)01043-H
  24. Kratochvil J., Dillon O.W. Thermodynamics of elastic-plastic materials as a theory with internal state variables. Journal of Applied Physics. 1969. V. 40, Iss. 8. P. 3207-3218. doi: 10.1063/1.1658167
  25. Berezhnoy D.V., Sekaeva L.R. Voprosy termodinamiki v mekhanike deformiruemogo tverdogo tela. Ch. II. Osnovy termodinamiki neobratimykh protsessov: uchebnoe posobie [Issues of thermodynamics in mechanics of a deformable body. Part II. Fundamentals of thermodynamics of irreversible processes: tutorial]. Kazan: Kazan University Publ., 2012. 54 p.
  26. Karama M. Determination of the fatigue limit of a carbon/epoxy composite using thermographic analysis. Structural Control and Health Monitoring. 2011. V. 18, Iss. 7. P. 781-789. doi: 10.1002/stc.485

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 VESTNIK of Samara University. Aerospace and Mechanical Engineering

License URL: https://journals.ssau.ru/index.php/vestnik/about/editorialPolicies#custom-2

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies