Verification of a design model and evaluation of a technique of manufacturing aircraft engine composite parts on the basis of dynamic tests


Cite item

Full Text

Abstract

The results of finite element modeling and experimental evaluation of dynamic characteristics (vibration modes and frequencies) of the composite element of aircraft power plant structures are presented. The aim of the work is to develop effective design and technological schemes for thin-walled complex-geometry composite parts, taking into account the peculiarities of mechanical behavior of polymer composite materials to the fullest extent possible. A method for determining the parameters of natural oscillations of composite parts in a free state using a ping test is developed, which allows excluding the influence of kinematic boundary conditions and obtaining frequency characteristics that depend only on the local characteristics of the material which are primarily determined by the manufacturing technology. According to the results of measurements of the amplitude-frequency parameters of the dynamic response, spectrograms of damped oscillations are obtained the peak values of which correspond to the experimental evaluation of the natural frequencies of the composite part. Verification of the design model was carried out according to the results of the ping test and a method for assessing the quality of technological processes of manufacturing thin-walled carbon fiber structures was proposed.

About the authors

A. V. Zinin

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: allzin@yandex.ru

Candidate of Science (Engineering);
Associate Professor of the Department of Strength of Materials, Dynamics and Strength of Machines

Russian Federation

A. N. Arkhipov

Moscow Aviation Institute (National Research University)

Email: arkhipov.48@list.ru

Candidate of Science (Engineering);
Senior Researcher of the Research Department

Russian Federation

D. P. Kholobtsev

Moscow Aviation Institute (National Research University)

Email: nio203_mai@mai.ru

Head of the Research Department

Russian Federation

Yu. A. Ravikovich

Moscow Aviation Institute (National Research University)

Email: yurav2@yandex.ru

Doctor of Science (Engineering);
Vice Rector for Research; Head of the Department  of Construction and Design of Engines

Russian Federation

A. O. Shevjakov

Moscow Aviation Institute (National Research University)

Email: shevyakov13@yandex.ru

Engineer of the Research Department

Russian Federation

M. A. Kholmanova

Public Joint-Stock Company UEC-Saturn

Email: marinakholmanova@gmail.com

Design Engineer

Russian Federation

References

  1. Bondar' V.S., Goryacheva I.G., Matvienko Yu.G., Kapustin S.A., Temis Yu.M., Tumanov N.V., Vladimirov S.A., Gorokhov V.A., Abashev D.R., Azmetov Kh.Kh., Petrov V.K., Churilov Yu.A. Resurs materialov i konstruktsiy [Service life of materials and structures]. Moscow: Moskovskiy Politekh Publ., 2019. 192 p.
  2. Stepnov M.N., Agamirov L.V., Zinin A.V., Kotov P.I., Makhutov N.A., Petukhov A.N., Vasil'ev D.V., Shavrin A.V., Gadenin M.M., Kuz'min A.E. Nauchnye shkoly. Prochnost' mashin i konstruktsiy pri peremennykh nagruzkakh [Scientific schools. Strength of machines and structures at variable loads]. Moscow: MATI - RGATU im. K.E. Tsiolkovskogo Publ., 2001. 164 p.
  3. Stepnov M.N., Zinin A.V. Prognozirovanie kharakteristik soprotivleniya ustalosti materialov i elementov konstruktsiy [Forecast of fatigue characteristics of materials and structural elements]. Moscow: Innovatsionnoe Mashinostroenie Publ., 2016. 392 p.
  4. Ryabov V.M., Yartsev B.A. Coupled damping vibrations of composite structures. Vestnik St. Petersburg University: Mathematics. 2012. V. 45, Iss. 4. P. 168-173. doi: 10.3103/S1063454112040073
  5. Zinin A.V., Bychkov N.G., Perchin A.V., Avruchsky V.V., Smirnova L.L. Thermal cyclic strength of ZhS6U superalloy and kinetics of damage accumulation under the impact of vibration loads. Industrial Laboratory. Diagnostics of Materials. 2017. V. 83, no. 2. P. 53-55. (In Russ.)
  6. Grinev M.A., Anoshkin A.N., Pisarev P.V., Shipunov G.S., Nikhamkin M.Sh., Balakirev A.A., Konev I.P., Golovkin A.Yu. Experimental and numerical studies of dynamic response of composite outlet guide vane for aircraft jet engine. PNRPU Mechanics Bulletin. 2016. No. 4. Р. 106-119. doi: 10.15593/perm.mech/2016.4.07 (In Russ.)
  7. Vasil'ev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of structures made of composite materials]. Moscow: Mashinostroenie Publ., 1988. 272 p.
  8. Zinin A.V., Kotov P.I., Sukhov S.V. Prakticheskaya mekhanika razrusheniya. T. 2 [Practical fracture mechanics. V. 2]. Moscow: Moscow Aviation Technological Institute Publ., 2012. 391 p.
  9. Anoshkin A.N., Zuiko V.Yu., Shipunov G.S., Tretyakov A.A. Technologies and problems of composite materials mechanics for production of outlet guide vane for aircraft jet engine. PNRPU Mechanics Bulletin. 2014. No. 4. P. 5-44. doi: 10.15593/perm.mech/2014.4.01 (In Russ.)
  10. Golovanov L.I., Tyuleneva O.N., Shigabutdinov L.F. Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsiy [Finite element method in statics and dynamics of thin-walled structures]. Moscow: Fizmatlit Publ., 2006. 392 p.
  11. Ivanov A.V., Leontiev M.K. Modal analysis of dynamic rotor systems. Russian Aeronautics. 2005. V. 48, Iss. 3. P. 45-53.
  12. Zinov'ev P.A., Smerdov A.A., Kulish G.G. Experimental investigation of elastodissipative characteristics of carbon-fiber-reinforced plastics. Mechanics of Composite Materials. 2003. V. 39, Iss. 5. P. 393-398. doi: 10.1023/B:MOCM.0000003289.12297.84
  13. Kiselev Yu.V., Kiselev D.Yu., Tits S.N. Vibratsionnaya diagnostika sistem i konstruktsiy aviatsionnoy tekhniki [Vibration diagnostics of aircraft systems and structures]. Samara: Samara State Aerospace University Publ., 2012. 206 p.
  14. Rusov V.A. Spektral'naya vibrodiagnostika [Spectral vibration diagnostics]. Perm: Vibro-Center Publ., 1996. 176 p.
  15. Ostyakov Yu.A., Zinin A.V., Shevchenko M.I., Feoktistova E.S. Nadezhnost' sistem izmereniya ekspluatatsionnykh parametrov pri otrabotke aviatsionnykh dvigateley. Proceedings of the XXIV International Symposium «Dynamic and Technological Problems of a Mechanics of Constructions and Continuous Mediums» (March, 19-23, 2018, Vyatichi). V. 2. Moscow: OOO «TRP» Publ., 2018. P. 116-118. (In Russ.)
  16. Babaevskiy P.G., Bukharov S.V. Formirovanie struktury otverzhdayushchikhsya kompozitsiy: ucheb. posobie [Formation of the structure of curing systems]. Moscow: Moscow State Aviation Technological University Publ., 1993. 100 p.
  17. Samipour S.A., Batrakov V.V., Konstantinov D.Y. Development of a technique to reduce porosity in composite structures at the limited autoclave pressure. Russian Aeronautics. 2018. V. 61, Iss. 3. P. 481-486. doi: 10.3103/S1068799818030248

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 VESTNIK of Samara University. Aerospace and Mechanical Engineering

License URL: https://journals.ssau.ru/index.php/vestnik/about/editorialPolicies#custom-2

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies