Influence of the geometry fidelity of resonant sound-absorbing liner samples on their acoustic characteristics

Abstract

Samples of sound-absorbing Helmholtz resonator-type liners of circular shape were manufactured from two types of ABS plastic and nylon on the basis of 3D modeling and 3D printing technology. Check samples were made of metal on a numerically controlled machine. Deviations of geometric parameters of the manufactured samples from the design values were determined by visual and dimensional inspection using high-precision equipment. The minimum deviations were obtained for check samples made of metal. The acoustic characteristics of the samples were experimentally determined using an interferometer with normal wave incidence at high sound pressure levels.  Numerical simulation of the acoustic processes in the interferometer for the given samples was carried out on the basis of solving full Navier-Stokes equations with account for compressibility. The obtained values of the resonant frequency, impedance and sound absorption coefficient were compared with the experimental ones. It was noted that the impedance values are most sensitive to the deviations of the geometric parameters of the samples from the design values, while the deviations in the sound absorption coefficient and resonance frequency are not so sensitive to them.

About the authors

O. Yu. Kustov

Perm National Research Polytechnic University

Author for correspondence.
Email: kustovou@yandex.ru

Postgraduate Student of the Department of Rocket and Space Equipment and Power Systems

Russian Federation

I. V. Khramtsov

Perm National Research Polytechnic University

Email: igorhrs92@mail.ru

Junior Research Fellow of the Laboratory of Noise Generation Mechanisms and Modal Analysis

Russian Federation

R. V. Bulbovich

Perm National Research Polytechnic University

Email: dekan_akf@pstu.ru

Doctor of Science (Engineering)
Dean of the Aerospace Faculty

Russian Federation

References

  1. Baklanov V.S. Snizhenie shuma i bezopasnost' poletov samoletov novogo pokoleniya s dvigatelyami sverkhbol'shoy stepeni dvukhkonturnosti. Sbornik dokladov II Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem «Zashchita naseleniya ot povyshennogo shumovogo vozdeystviya» (Russian Federation, Saint-Petersburg, March, 17-19, 2009). SPb: INNOVA Publ., 2014. P. 325-330. (In Russ.)
  2. Yu J., Chien E. Folding cavity acoustic liner for combustion noise reduction. 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2681
  3. Fedotov E.S., Khramtsov I.V., Kustov O.Y. Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels. AIP Conference Proceedings. 2016. V. 1770. doi: 10.1063/1.4964062
  4. Khramtsov I.V., Kustov O.Y., Fedotov E.S., Siner A.A. On numerical simulation of sound damping mechanisms in the cell of a sound-absorbing structure. Acoustical Physics. 2018. V. 64, Iss. 4. P. 511-517. doi: 10.1134/s1063771018040073
  5. Khramtsov I.V., Kustov O.Yu., Fedotov E.S., Palchikovskiy V.V., Siner A.A. Numerical simulation of acoustic processes in interferometer with samples of multilayer sound-absorbing liners. PNRPU Aerospace Engineering Bulletin. 2017. No. 51. P. 5-15. doi: 10.15593/2224-9982/2017.51.01 (In Russ.)
  6. Kustov O.Yu., Lapin I.N., Palchikovskiy V.V. O vliyanii defektov v obraztsakh zvukopogloshchayushchikh konstruktsiy na ikh akusticheskie kharakteristiki. Materialy XVII Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii» (November, 17-18, 2016, Perm). Perm: Perm National Research Polytechnic University Publ., 2016. P. 112-115. (In Russ.)
  7. Murray P.B., Ferrante P., Scofano A. Manufacturing process and boundary layer influences on perforate liner impedance. AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-2849
  8. Howerton B.M., Jones M.G., Buckley J.L. Development and validation of an interactive liner design and impedance modeling tool. 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2197
  9. Sobolev A.F., Ostrikov N.N., Anoshkin A.N., Palchikovskiy V.V., Burdakov R.V., Ipatov M.S., Ostroumov M.N., Yakovets M.A. Omparison of liner impedance derived from the results of measurements at two different setups using a small number of microphones. PNRPU Aerospace Engineering Bulletin. 2016. No. 45. P. 89-113. doi: 10.15593/2224-9982/2016.45.05 (In Russ.)
  10. Anoshkin A.N., Palchikovskiy V.V., Pisarev P.V., Kustov O.Yu., Lapin I.N. Osobennosti izgotovleniya etalonnykh obraztsov zvukopogloshchayushchikh konstruktsiy s primeneniem additivnykh tekhnologiy. Tezisy dokladov pyatoy otkrytoy vserossiyskoy (XVII nauchno-tekhnicheskoy) konferentsii po aeroakustike (September, 25-29, 2017, Zvenigorod). Moscow: Central Aerohydrodynamic Institute Publ., 2017. P. 74. (In Russ.)
  11. Chung J.Y., Blaser D.A. Transfer function method of measuring in-duct acoustic properties. I. Theory. The Journal of Acoustical Society of America. 1980. V. 68, Iss. 3. P. 907-913. doi: 10.1121/1.384778
  12. Chung J.Y., Blaser D.A. Transfer function method of measuring in‐duct acoustic properties. II. Experiment. The Journal of the Acoustical Society of America. 1980. V. 68, Iss. 3. P. 914-921. doi: 10.1121/1.384779
  13. Kustov O.Yu., Palchikovskiy V.V. Interferometr dlya vysokikh urovney akusticheskogo davleniya. Materialy XVI Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii» (November, 17-18, 2015, Perm). Perm: Perm National Research Polytechnic University Publ., 2015. P. 157-160. (In Russ.)
  14. Fedotov E.S., Kustov O.Yu., Khramtsov I.V., Palchikovskiy V.V. Comparative analysis of acoustical interferometers based on experiment-calculated research of sound-absorbing liner samples. PNRPU Aerospace Engineering Bulletin. 2017. No. 48. P. 89-103. doi: 10.15593/2224-9982/2017.48.09 (In Russ.)

Statistics

Views

Abstract: 1135

PDF (Russian): 558

Dimensions

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2019 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies