Residual stresses and fatigue resistance of toothed wheels

Abstract

Residual stresses in the dangerous section of toothed wheels made of materials and according to practices accepted in aviation engine construction have been determined using a mechanical method. The influence of the technology of manufacturing of toothed wheels, thermo-chemical treatment, hardening and coating on the residual stresses has been examined. Current technologies of manufacturing toothed wheels lead to significant dispersion of residual stresses, especially after thermo-chemical treatment. Therefore, the results have been statistically processed for each batch of parts and the average values are shown on the residual stress diagrams. We demonstrate the possibility of determining residual stress distribution in the dangerous section of a wheel tooth by the initial deformations of the reference specimen, which makes it possible to keep the part under examination unimpaired. A plate made of the same material as the toothed wheel and hardened simultaneously with the part under examination was used as a reference specimen. The influence of residual stresses on the fatigue resistance of toothed wheels by the average integral residual stresses criterion that takes into account both the value of residual stresses and the nature of their distribution in the dangerous section of toothed wheels was examined.

About the authors

V. S. Vakulyuk

Samara National Research University

Author for correspondence.
Email: vak.v.s@yandex.ru

Doctor of  Science (Engineering)

Professor of the Department of Strength of Materials

Russian Federation

Yu. P. Kovalkin

Samara National Research University

Email: sopromat@ssau.ru

Candidate of Science (Engineering)

Associate Professor of the Department of Strength of Materials

Russian Federation

V. P. Sazanov

Samara National Research University

Email: sazanow@mail.ru

Candidate of Science (Engineering)

Associate Professor of the Department of Strength of Materials

Russian Federation

V. K. Shadrin

Samara National Research University

Email: shadrinvk@gmail.com

Candidate of Science (Engineering)

Associate Professor of the Department of Strength of Materials

Russian Federation

References

  1. Pavlov V.F. On connection between residual stresses and the endurance limit under bending in stresses concentration conditions. Proceedings of Higher Educational Institutions. Маchine Building. 1986. No. 8. P. 29-32. (In Russ.)
  2. Pavlov V.F. Influence of a value and a distribution of residual stresses in the surface layer of a part with a concentrator on the endurance limit. Report 1. Solid parts. Proceedings of Higher Educational Institutions. Маchine Building. 1988. No. 8. P. 22-26. (In Russ.)
  3. Pavlov V.F. The influence of a value and a distribution of residual stresses in the surface layer of a part with a concentrator on the endurance limit. Report II. Hollow parts. Proceedings of Higher Educational Institutions. Маchine Building. 1988. No. 12. P. 37-40. (In Russ.)
  4. Pavlov V.F., Kirpichev V.A, Vakulyuk V.S. Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnennykh detaley po ostatochnym napryazheniyam [Prediction of fatigue strength of surface hardened components by residual stresses]. Samara: Samarskiy Nauchnyy Tsentr RAN Publ., 2012. 125 p.
  5. Ivanov S.I. K opredeleniyu ostatochnykh napryazheniy v tsilindre metodom kolets i polosok. Sb. trudov «Ostatochnye napryazheniya». Iss. 53. Kuibyshev: Kuibyshev Aviation Institute Publ., 1971. P. 32-42. (In Russ.)
  6. Ivanov S.I., Trofimov N.G., Shatunov M.P., Ermolaev V.M., Kovalkin Yu.P., Freydin E.I. Sposob opredeleniya ostatochnykh napryazheniy v shesternyakh [Method of measuring residual stresses in gears]. Author’s certificate, USSR, no. 1439380, 1988. (Publ. 23.11.1988, bull. no. 43)
  7. Shatunov M.P., Kovalkin Yu.P. Primenenie metoda konechnykh elementov dlya opredeleniya ostatochnykh napryazheniy vo vpadinakh shesteren. Dep. v VNIITEMR, 1986. no. 301. 27 p. (In Russ.)
  8. Stepnov M.N. Statisticheskaya obrabotka rezul'tatov mekhanicheskikh ispytaniy [Statistical analysis of results of mechanical tests]. Moscow: Mashinostroenie Publ., 1972. 232 p.
  9. Kuznetsov N.D., Tseytlin V.I., Volkov V.I. Tekhnologicheskie sposoby povysheniya nadezhnosti i resursa detaley gazoturbinnykh dvigateley. Sb. statey «Novye tekhnologicheskie protsessy i nadezhnost' GTD». Vyp. 3. Moscow: Central Institute of Aviation Motors Publ., 1975. P. 12. (In Russ.)
  10. Turovskii M.L., Shifrin I.M. Stress concentration in the surface layer of cemented steel. Vestnik Mashinostroeniya. 1970. No. 11. P. 37-40. (In Russ.)
  11. Vakulyuk V.S., Kirpichev V.A., Pavlov V.F., Sazanov V.P. Forecasting the limits of endurance surface hardening of specimens with stress. Vestnik UGATU. 2013. V. 17, no. 1 (54). P. 45-49. (In Russ.)
  12. Chirkov A.V., Sazanov V.P., Samoylov V.A., Larionova Y.S. Modeling of redistribution of residual stresses in the cylindrical specimens after advancing surface plastic forming. Vestnik of the Samara State Aerospace University. 2011. No. 3 (27), part 3. P. 171-174. (In Russ.)

Statistics

Views

Abstract: 1458

PDF (Russian): 739

Dimensions

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies