Inertial measuring units for future-generation aerospace products: fault-tolerance
- Authors: Vodicheva L.V.1, Bel'skiy L.N.1, Parysheva Y.V.1, Lystsov A.A.1
-
Affiliations:
- Scientific and Production Association of automatics named after academician N.A. Semikhatov
- Issue: Vol 17, No 1 (2018)
- Pages: 28-44
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/6088
- DOI: https://doi.org/10.18287/2541-7533-2018-17-1-28-44
- ID: 6088
Cite item
Full Text
Abstract
A Strapdown Inertial Measurement Unit (SIMU) with structural redundancy intended for improving fault-tolerance and accuracy of inertial navigation systems for space applications is considered. The SIMU includes six angular rate sensors and six accelerometers, which allows for identification and correction of one fault with high probability and two faults with lower probability for each type of sensor. Known theoretical and practical techniques developed and used in this area are briefly described. The problem of optimization of measurement axes orientation is considered. The accuracy of estimation of the measured vector projections in the orthogonal instrument coordinate system serves as the criterion of optimization. A solution of this problem for no faults, one fault, and two faults is proposed. Algorithms of failure detection, identification and correction (FDIC) are analyzed. The results of testing FDIC basic algorithms with the help of mathematical simulation are considered. Optimal measurement axes configurations are compared with each other from the FDIC efficiency point of view. It is shown that neither of the methods yields 100-percent correct diagnostics not only for two faults but for one fault as well. Possible sources of incorrect diagnostics are analyzed.
About the authors
L. V. Vodicheva
Scientific and Production Association of automatics named after academician N.A. Semikhatov
Author for correspondence.
Email: avt@npoa.ru
Senior Researcher
Russian FederationL. N. Bel'skiy
Scientific and Production Association of automatics named after academician N.A. Semikhatov
Email: avt@npoa.ru
Candidate of Science (engineering)
Deputy General Director – First Deputy of General Designer
Russian FederationYu. V. Parysheva
Scientific and Production Association of automatics named after academician N.A. Semikhatov
Email: avt@npoa.ru
Candidate of Science (Physics and Mathematics)
Head of Group
Russian FederationA. A. Lystsov
Scientific and Production Association of automatics named after academician N.A. Semikhatov
Email: avt@npoa.ru
Design Engineer
Russian FederationReferences
- Epifanov A.D. Izbytochnye sistemy upravleniya letatel'nymi apparatami [Redundant control systems for flying vehicles]. Moscow: Mashinostroenie Publ., 1978. 144 p.
- Vodicheva L.V., Lystsov A.A., Parysheva Yu.V. Fault tolerance of strapdown inertial measuring units of advanced launch vehicles. Raketno-kosmicheskaya tekhnika. 2017. V. 1, no. 2 (10). P. 49-61. (In Russ.)
- Gilmore J.P., Mckern R.A. A Redundant Strapdown Inertial Reference Unit. Journal of Spacecraft and Rockets. 1972. V. 9, Iss. 1. P. 39-47. doi: 10.2514/3.61628
- Wilcox J.C. Maximum Likelihood Failure Detection for Redundant Inertial Instruments. AIAA Guidance and Control Conference. Stanford, Calif., Aug. 1972. AIAA Paper no. 72-864.
- Potter J.E., Deckert J.C. Minimax Failure Detection and Identification in Redundant Gyro and Accelerometer Systems. Journal of Spacecraft and Rockets. 1973. V. 10, Iss. 4. P. 236-243. doi: 10.2514/3.27753
- Pejsa A.J. Optimum Skewed Redundant Inertial Navigators. Guidance and Control Conference. 1973. doi: 10.2514/6.1973-850
- Ebner R.E., Mark J.G. Redundant Integrated Flight-Control/Navigation Inertial Sensor Complex. Journal of Guidance, Control, and Dynamics. 1978. V. 1, Iss. 2. P. 143-149. doi: 10.2514/3.55757
- Daly K.C., Gai E., Harrison J.V. Generalized Likelihood Test for FDI in Redundant Sensor Configurations. Journal of Guidance, Control, and Dynamics. 1979. V. 2, Iss. 1. P. 9-17. doi: 10.2514/3.55825
- Mironovsky L.A. Functional diagnosis of dynamic systems (Survey). Avtomatika i Telemekhanika. 1980. No. 8. P. 96-121. (In Russ.)
- Belov E.A. Razrabotka algoritmov i metodov nadezhnogo i tochnogo opredeleniya parametrov dvizheniya v sistemakh so strukturnoy izbytochnost'yu. Dis. … kand. tekhn. nauk [Development of algorithms and methods for precise determination of motion parameters in systems with structural redundancy. Thesis for a Candidate Degree in Engineering Science]. Leningrad, 1981. 162 p.
- Vodicheva L.V. Increasing reliability and accuracy of strapdown inertial measuring unit with redundant measurement quantity. Gyroscopy and Navigation. 1997. No. 1 (16). P. 55-67. (In Russ.)
- Yang C-K., Shim D-S. Accommodation rule based on navigation accuracy for double faults in redundant inertial sensor systems. International Journal of Control, Automation, and Systems. 2007. V. 5, Iss. 3. P. 329-336.
- Yang C-K., Shim D-S. Best Sensor Configuration and Accommodation Rule Based on Navigation Performance for INS with Seven Inertial Sensors. Sensors. 2009. V. 9, Iss. 11. P. 8456-8472. doi: 10.3390/s91108456
- Dai X., Zhao L., Shi Z. Fault tolerant control in redundant inertial navigation system. Mathematical Problems in Engineering. 2013. V. 2013. doi: 10.1155/2013/782617
- Lee W., Park C.G. Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA. Sensors. 2014. V. 14, Iss. 2. P. 3428-3444. doi: 10.3390/s140203428
- Negri C., Labarre E., Lignon C., Brunstein E., Salaün E. A new generation of IRS with innovative architecture based on HRG for satellite launch vehicles. Gyroscopy and Navigation. 2016. V. 7, Iss. 3. P. 223-230. doi: 10.1134/S2075108716030135
- Izmailov E.A., Tchesnokov G.I., Troizkij V.A., Gordasevich A.A. Cheap Small Size Inertial Navigation System with Increased Reliability. Proceedings 2nd Saint-Petersburg International Conference on Gyroscopic Technology and Navigation. 1995. Part I. P. 139-149.
- Branets V.N., Dibrov D.N., Ryzhkov V.S. Diagnostika i vychislenie parametrov orientatsii izbytochnykh besplatformennykh inertsial'nykh navigatsionnykh sistem (BINS). Mekhanika i navigatsiya: sb. materialov nauchnoy sessii, posvyashchennoy 85-letiyu akademika RAN A.Yu. Ishlinskogo. Saint-Petersburg: Central Scientific and Research Institute «Electropribor» Publ., 1999. P. 22-35. (In Russ.)
- Aleshkin M.V. Sovershenstvovanie skhem i algoritmov predvaritel'noy obrabotki informatsii izbytochnykh blokov inertsial'nykh datchikov. Dis. … kand. tekhn. nauk [Improvement of schemes and algorithms of preliminary data processing in Redundant Inertial Measurement Units]. Thesis for a Candidate Degree in Engineering Science. Saratov, 2009. 141 p.
- Novosti kompanii Optolink. 24.07.2017. MAKS-2017 [Optolink Company News. 24.07.2017. MAKS-2017]. Available at: http://optolink.ru/en/news/2017_maks
- NPP «Antares». Vysokonadezhnye otkazoustoychivye pribory [Antares Research and Production Enterprise. High-reliability fault tolerant instruments]. Available at: http://npp-antares.ru/equipment.html
- Brammer K., Siffling G. Kalman-Bucy-Filter. München: R. Oldenbourg Verlag, 1975. 232 p.
- Mal'tsev A.I. Osnovy lineynoy algebry [Fundamentals of linear algebra]. Moscow: Nauka Publ., 1970. 402 p.
- Vodicheva L. Fault-tolerant Strapdown Inertial Measurement Unit: Failure Detection and Isolation Technique. Proceedings 6th Saint Petersburg International Conference on Integrated Navigation Systems. 1999. P. 9-10.
- Lystsov A.A., Parysheva Yu.V., Vodicheva L.V. Algoritmy vyyavleniya i diagnostiki neispravnostey shestiosnogo izbytochnogo besplatformennogo inertsial'nogo izmeritel'nogo bloka. Sb. trudov XVIII Sankt-Peterburgskoy konferentsii molodykh uchenykh «Navigatsiya i upravlenie dvizheniem». St. Petersburg: Central Scientific and Research Institute «Electropribor» Publ., 2016. P. 499-505. (In Russ.)
- Vodicheva L., Lystsov A., Parysheva Yu. Redundant Strapdown Inertial Measurement Unit: Fault-tolerance Improvement. Proceedings 23rd Saint Petersburg International Conference on Integrated Navigation Systems. 2016. P. 135-138.