Inertial measuring units for future-generation aerospace products: fault-tolerance


Cite item

Full Text

Abstract

A Strapdown Inertial Measurement Unit (SIMU) with structural redundancy intended for improving fault-tolerance and accuracy of inertial navigation systems for space applications is considered. The SIMU includes six angular rate sensors and six accelerometers, which allows for identification and correction of one fault with high probability and two faults with lower probability for each type of sensor. Known theoretical and practical techniques developed and used in this area are briefly described. The problem of optimization of measurement axes orientation is considered. The accuracy of estimation of the measured vector projections in the orthogonal instrument coordinate system serves as the criterion of optimization. A solution of this problem for no faults, one fault, and two faults is proposed. Algorithms of failure detection, identification and correction (FDIC) are analyzed. The results of testing FDIC basic algorithms with the help of mathematical simulation are considered. Optimal measurement axes configurations are compared with each other from the FDIC efficiency point of view. It is shown that neither of the methods yields 100-percent correct diagnostics not only for two faults but for one fault as well. Possible sources of incorrect diagnostics are analyzed.

About the authors

L. V. Vodicheva

Scientific and Production Association of automatics named after academician N.A. Semikhatov

Author for correspondence.
Email: avt@npoa.ru

Senior Researcher

Russian Federation

L. N. Bel'skiy

Scientific and Production Association of automatics named after academician N.A. Semikhatov

Email: avt@npoa.ru

Candidate of Science (engineering)

Deputy General Director – First Deputy of General Designer

Russian Federation

Yu. V. Parysheva

Scientific and Production Association of automatics named after academician N.A. Semikhatov

Email: avt@npoa.ru

Candidate of Science (Physics and Mathematics)

Head of Group

Russian Federation

A. A. Lystsov

Scientific and Production Association of automatics named after academician N.A. Semikhatov

Email: avt@npoa.ru

Design Engineer

Russian Federation

References

  1. Epifanov A.D. Izbytochnye sistemy upravleniya letatel'nymi apparatami [Redundant control systems for flying vehicles]. Moscow: Mashinostroenie Publ., 1978. 144 p.
  2. Vodicheva L.V., Lystsov A.A., Parysheva Yu.V. Fault tolerance of strapdown inertial measuring units of advanced launch vehicles. Raketno-kosmicheskaya tekhnika. 2017. V. 1, no. 2 (10). P. 49-61. (In Russ.)
  3. Gilmore J.P., Mckern R.A. A Redundant Strapdown Inertial Reference Unit. Journal of Spacecraft and Rockets. 1972. V. 9, Iss. 1. P. 39-47. doi: 10.2514/3.61628
  4. Wilcox J.C. Maximum Likelihood Failure Detection for Redundant Inertial Instruments. AIAA Guidance and Control Conference. Stanford, Calif., Aug. 1972. AIAA Paper no. 72-864.
  5. Potter J.E., Deckert J.C. Minimax Failure Detection and Identification in Redundant Gyro and Accelerometer Systems. Journal of Spacecraft and Rockets. 1973. V. 10, Iss. 4. P. 236-243. doi: 10.2514/3.27753
  6. Pejsa A.J. Optimum Skewed Redundant Inertial Navigators. Guidance and Control Conference. 1973. doi: 10.2514/6.1973-850
  7. Ebner R.E., Mark J.G. Redundant Integrated Flight-Control/Navigation Inertial Sensor Complex. Journal of Guidance, Control, and Dynamics. 1978. V. 1, Iss. 2. P. 143-149. doi: 10.2514/3.55757
  8. Daly K.C., Gai E., Harrison J.V. Generalized Likelihood Test for FDI in Redundant Sensor Configurations. Journal of Guidance, Control, and Dynamics. 1979. V. 2, Iss. 1. P. 9-17. doi: 10.2514/3.55825
  9. Mironovsky L.A. Functional diagnosis of dynamic systems (Survey). Avtomatika i Telemekhanika. 1980. No. 8. P. 96-121. (In Russ.)
  10. Belov E.A. Razrabotka algoritmov i metodov nadezhnogo i tochnogo opredeleniya parametrov dvizheniya v sistemakh so strukturnoy izbytochnost'yu. Dis. … kand. tekhn. nauk [Development of algorithms and methods for precise determination of motion parameters in systems with structural redundancy. Thesis for a Candidate Degree in Engineering Science]. Leningrad, 1981. 162 p.
  11. Vodicheva L.V. Increasing reliability and accuracy of strapdown inertial measuring unit with redundant measurement quantity. Gyroscopy and Navigation. 1997. No. 1 (16). P. 55-67. (In Russ.)
  12. Yang C-K., Shim D-S. Accommodation rule based on navigation accuracy for double faults in redundant inertial sensor systems. International Journal of Control, Automation, and Systems. 2007. V. 5, Iss. 3. P. 329-336.
  13. Yang C-K., Shim D-S. Best Sensor Configuration and Accommodation Rule Based on Navigation Performance for INS with Seven Inertial Sensors. Sensors. 2009. V. 9, Iss. 11. P. 8456-8472. doi: 10.3390/s91108456
  14. Dai X., Zhao L., Shi Z. Fault tolerant control in redundant inertial navigation system. Mathematical Problems in Engineering. 2013. V. 2013. doi: 10.1155/2013/782617
  15. Lee W., Park C.G. Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA. Sensors. 2014. V. 14, Iss. 2. P. 3428-3444. doi: 10.3390/s140203428
  16. Negri C., Labarre E., Lignon C., Brunstein E., Salaün E. A new generation of IRS with innovative architecture based on HRG for satellite launch vehicles. Gyroscopy and Navigation. 2016. V. 7, Iss. 3. P. 223-230. doi: 10.1134/S2075108716030135
  17. Izmailov E.A., Tchesnokov G.I., Troizkij V.A., Gordasevich A.A. Cheap Small Size Inertial Navigation System with Increased Reliability. Proceedings 2nd Saint-Petersburg International Conference on Gyroscopic Technology and Navigation. 1995. Part I. P. 139-149.
  18. Branets V.N., Dibrov D.N., Ryzhkov V.S. Diagnostika i vychislenie parametrov orientatsii izbytochnykh besplatformennykh inertsial'nykh navigatsionnykh sistem (BINS). Mekhanika i navigatsiya: sb. materialov nauchnoy sessii, posvyashchennoy 85-letiyu akademika RAN A.Yu. Ishlinskogo. Saint-Petersburg: Central Scientific and Research Institute «Electropribor» Publ., 1999. P. 22-35. (In Russ.)
  19. Aleshkin M.V. Sovershenstvovanie skhem i algoritmov predvaritel'noy obrabotki informatsii izbytochnykh blokov inertsial'nykh datchikov. Dis. … kand. tekhn. nauk [Improvement of schemes and algorithms of preliminary data processing in Redundant Inertial Measurement Units]. Thesis for a Candidate Degree in Engineering Science. Saratov, 2009. 141 p.
  20. Novosti kompanii Optolink. 24.07.2017. MAKS-2017 [Optolink Company News. 24.07.2017. MAKS-2017]. Available at: http://optolink.ru/en/news/2017_maks
  21. NPP «Antares». Vysokonadezhnye otkazoustoychivye pribory [Antares Research and Production Enterprise. High-reliability fault tolerant instruments]. Available at: http://npp-antares.ru/equipment.html
  22. Brammer K., Siffling G. Kalman-Bucy-Filter. München: R. Oldenbourg Verlag, 1975. 232 p.
  23. Mal'tsev A.I. Osnovy lineynoy algebry [Fundamentals of linear algebra]. Moscow: Nauka Publ., 1970. 402 p.
  24. Vodicheva L. Fault-tolerant Strapdown Inertial Measurement Unit: Failure Detection and Isolation Technique. Proceedings 6th Saint Petersburg International Conference on Integrated Navigation Systems. 1999. P. 9-10.
  25. Lystsov A.A., Parysheva Yu.V., Vodicheva L.V. Algoritmy vyyavleniya i diagnostiki neispravnostey shestiosnogo izbytochnogo besplatformennogo inertsial'nogo izmeritel'nogo bloka. Sb. trudov XVIII Sankt-Peterburgskoy konferentsii molodykh uchenykh «Navigatsiya i upravlenie dvizheniem». St. Petersburg: Central Scientific and Research Institute «Electropribor» Publ., 2016. P. 499-505. (In Russ.)
  26. Vodicheva L., Lystsov A., Parysheva Yu. Redundant Strapdown Inertial Measurement Unit: Fault-tolerance Improvement. Proceedings 23rd Saint Petersburg International Conference on Integrated Navigation Systems. 2016. P. 135-138.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies