Development and analysis of models of heat transfer in compact porous heat exchangers of aero space control systems


Cite item

Full Text

Abstract

The paper presents a study of thermal and hydraulic characteristics of porous heat exchangers in conditions of intensive heat dissipation from compact surfaces. We present a mathematical model of convective heat transfer in a porous heat exchange element for conjugate Darcy-Brinkman-Forchheimer equations with boundary conditions of the second kind. An accurate solution of hydrodynamic and thermal problems is obtained analytically by integral transformation. We obtained dependences for determining the velocity field, the length of the initial hydrodynamic area, the Fanning hydraulic friction head, the local temperature of the porous matrix and the liquid cooler, the local Nusselt numbers. We assessed the influence of porosity, permeability, Darcy and Reynolds numbers on the thermal and hydraulic condition of a compact porous heat exchanger. Reasonable ranges of thermal and hydraulic characteristics of the heat exchangers being developed are established. Critical operating modes of heat exchangers are specified. The data obtained agree well with the classical results. We developed an engineering methodology differing from the existing ones by its invariance. The methodology makes it possible to determine the design characteristics of compact porous heat-exchange elements of aerospace control systems.

About the authors

D. A. Konovalov

Voronezh State Technical University

Author for correspondence.
Email: dmikonovalov@yandex.ru

Candidate of Science (Engineering)
Associate Professor of The Department of Theoretical and Industrial Heat Power Engineering

Russian Federation

References

  1. Intensifikatsiya teplo- i massoobmena na makro-, mikro- i nanomasshtabakh [Intensification of heat and mass transfer on the macro-, micro - and nanoscale / ed. by Yu.A. Kuzma-Kichta]. Moscow: TsNIIatominform Publ., 2008. 532 p.
  2. Konovalov D.A., Drozdov I.G., Shmatov D.P., Dakhin S.V., Kozhukhov N.N. Razrabotka i modelirovanie mikrokanal'nykh system okhlazhdeniya [Development and modeling of microchannel cooling systems]. Voronezh: Voronezh State Technical University Publ., 2013. 222 p.
  3. Hsu C.T., Cheng P. Thermal dispersion in porous medium. International Journal of Heat and Mass Transfer. 1990. V. 33, Iss. 8. P. 1587-1597. doi: 10.1016/0017-9310(90)90015-M
  4. Gamal A.A., Furmanski P. Problems of modeling flow and heat transfer in porous media. Biuletyn Instytutu Techniki Cieplnej Politechniki Warszawskiej. 1997. No. 85. P. 55-88.
  5. Bear J., Bachmat Y. Introduction to Modeling of Transport Phenomena in Porous Media. Dordrecht: Kluwer Academic Publishers, 1990. 554 p.
  6. Beji H., Gobin D. Influence of thermal dispersion on natural convection heat transfer in porous media. Numerical Heat Transfer. 1992. V. 22, Iss. 4. P. 487-500. doi: 10.1080/10407789208944779
  7. Amiri A., Vafai K. Analysis of dispersion effects and non-thermal equilibrium, non-Darsian vairiable porosity incompressible flow through porous media. International Journal of Heat and Mass Transfer. 1994. V. 37, Iss. 6. P. 939-954. doi: 10.1016/0017-9310(94)90219-4
  8. Popov I.A. Gidrodinamika i teploobmen v poristykh teploobmennykh elementakh i apparatakh [Hydrodynamics and heat transfer in porous heat exchange elements and devices]. Kazan: Tsentr Informatsionnykh Tekhnologiy Publ., 2007. 240 p.
  9. Izadpanah M.R., Muller-Steinhagen H., Jamialahmadi M. Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium. International Journal of Heat and Fluid Flow. 1998. V. 19, Iss. 16. P. 629-635. doi: 10.1016/s0142-727x(98)10035-8
  10. Slezkin N.A. Dinamika vyazkoy neszhimaemoy zhidkosti [Dynamics of a viscous incompressible fluid]. Moscow: Gosudarstvennoe Izdatel'stvo Tekhniko-Teoreticheskoy Literatury Publ., 1955. 521 p.
  11. Ingham D.B., Bejan A., Mamut E., Pop I. Emerging Technologies and Techniques in Porous Media. Dordrecht: Kluwer Academic Publishers, 2004. 500 p.
  12. Shah R.K., London A.L. Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978. 492 p.
  13. Intensifikatsiya teploobmena: Tematicheskiy sbornik [Intensification of heat exchange / ed. by A.A. Zhukauskas, E.K. Kalinin]. Vilnyus: Mokslas Publ., 1988. 185 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies