Abstract
Ultralow power turbine drives are used in aerospace and other transport equipment as energy for various units, mostly supplementary ones. The main components of the drives are an input device, a very low power turbine and an output device. Improving the efficiency of low-power turbine drives is a vital task. Energy indicators, such as power efficiency and specific working medium consumption of the working fluid are some of the most important performance indicators. The article presents configurations of axial and centripetal turbine ultra-low power, describes their basic operating and geometrical parameters that influence the energy efficiency of the drive. We present mathematical models of the efficiency of the turbines of two types, obtained from the results of gas-dynamic computational experiments. The results of statistical correlation and regression analysis of computational experiments presented in the article show the adequacy of the mathematical models. We analyzed the degree of influence of the model factors and their interactions on the changes in the efficiency of using the influence coefficients and graphical analysis of the results of the optimization parameters of the turbine.