Development of a neural network model of a micro gas turbine engine


Cite item

Full Text

Abstract

The study covers the development of a mathematical model of a micro gas turbine (MGTE) operating under transient conditions using a recurrent neural network. The compressor inlet temperature and pressure depending on the aircraft height and speed are taken into account explicitly. A full-size mathematical dynamic MGTE model based on engine per-unit description was used to verify the developed model. The obtained model was compared with the existing one employing normalized parameters of aircraft flight level and airspeed. The simulation suggests that the proposed model yields significantly smaller errors than the existing one, whereas the computation time of both models differs insignificantly.

About the authors

A. V. Kuznetsov

Samara National Research University

Author for correspondence.
Email: a.v.kuznetsov91@mail.ru

Engineer

Russian Federation

G. M. Makaryants

Samara National Research University

Email: georgy.makaryants@gmail.com

Doctor of Science (Engineering), Associate Professor
Professor of the Department of Automatic Systems of Power Plants

Russian Federation

References

  1. Vasiliyev V.I., Zhernakov S.V., Musluhov I.I. On-board algorithms of gas-turbine engine parameters checking on the basis of neural network technology. Vestnik UGATU. 2009. V. 12, no 1 (30). P. 61-74. (In Russ.)
  2. Zhernakov S.V., Gilmashin A.T. New onboard gas turbine engine diagnostic algorithms based on neural-fuzzy networks. Vestnik UGATU. 2015. V. 19, no 2 (68). P. 63-68. (In Russ.)
  3. Kulikov G.G., Pogorelov G.I., Badamshin B.I., Abdulnagimov A.I. Method of constructing of neural network model of two-shaft gas turbine engine under conditions of structural adequacy. Aerospace Technic and Technology. 2014. No. 9 (116). P. 68-73. (In Russ.)
  4. Asgari H., Chen X.Q., Morini M., Pinelli M., Sainudin R., Spina P.R., Venturini M. NARX models for simulation of the start-up operation of a singleshaft gas turbine. Applied Thermal Engineering. 2016. V. 93. P. 368-376. doi: 10.1016/j.applthermaleng.2015.09.074
  5. Nikpey H., Assadi M., Breuhaus P. Development of an optimized artificial neural network model for combined heat and power micro gas turbines. Applied Energy. 2013. V. 108. P. 137-148. doi: 10.1016/j.apenergy.2013.03.016
  6. Tayarani-Bathaie S.S., Vanini Z.N.S., Khorasani K. Dynamic neural network-based fault diagnosis of gas turbine engines. Neurocomputing. 2014. V. 125. P. 153-165. doi: 10.1016/j.neucom.2012.06.050
  7. Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok [Theory, calculation and design of aircraft engines and power plants]. Moscow: Mashinostroenie Publ., 2003. 616 p.
  8. Bazazzade M., Shahriari A., Badihi H. Improved turbine engine hierarchical modeling and simulation based on engine fuel control system. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver: American Institute of Aeronautics and Astronautics, 2009. doi: 10.2514/6.2009-5525
  9. Li P., Degobert P., Francois B., Robyns B. Modeling and control of a gas micro turbine generator by using a causal ordering graph. The Proceedings of the Multiconference on «Computational Engineering in Systems Applications». 2006. P. 271-277. doi: 10.1109/cesa.2006.4281662
  10. Ailer P., Sánta I., Szederkényi G., Hangos K.M. Nonlinear model-building of a low-power gas turbine. Periodica Polytechnica Transportation Engineering. 2001. V. 29, Iss. 1-2. P. 117-135.
  11. Hosseinalipour S.M., Razaghi E., Abdolahi M. Static and dynamic mathematical modeling of a micro gas turbine. Journal of Mechanics. 2013. V. 29, Iss. 02. P. 327-335. doi: 10.1017/jmech.2013.3
  12. Boyko L.G., Karpenko E.L., AkhtemenkoYu.F. Method of calculating GTE gas-thermodynamic parameters with blade row description of an axial multistage compressor. Vestnik of the Samara State Aerospace University. 2013. No. 3 (41), part 2. P. 31-39. (In Russ.)
  13. Badami M., Ferrero M.G., Portoraro A. Dynamic parsimonious model and experimental validation of a gas microturbine at part-load conditions. Applied Thermal Engineering. 2014. V. 75. P. 14-23. doi: 10.1016/j.applthermaleng.2014.10.047
  14. Dobryanskiy G.V., Mart'yanova. T.S. Dinamika aviatsionnykh GTD [Dynamics of aviation gas turbine engines]. Moscow: Mashinostroenie Publ., 1989. 240 p.
  15. Shevyakov A.A. Avtomatika aviatsionnykh i raketnykh silovykh ustanovok [Automatics of aircraft and rocket power plants]. Moscow: Mashinostroenie Publ., 1965. 548 p.
  16. Dorofeev V.M., Maslov V.G., Pervyshin N.V., Svatenko S.A., Fishbeyn B.D. Termogazodinamicheskiy raschet gazoturbinnykh silovykh ustanovok [Thermal gas dynamic calculation of gas turbine power plants]. Moscow: Mashnostroenie Publ., 1973. 144 p.
  17. Tkachenko A.Yu., Rybakov V.N., Krupenich I.N., Ostapuk Ya.A., Filinov E.P. Computer-aided system of virtual gas turbine engine testing. Vestnik of the Samara State Aerospace University. 2014. No. 5 (47), part 3. P. 113-119. (In Russ.)
  18. Gol'berg F.D., Batenin A.V. Matematicheskie modeli gazoturbinnykh dvigateley – kak ob"ektov upravleniya [Mathematical models of gas turbine engines as objects of control]. Moscow: Moscow Aviation Institute Publ., 1999. 82 p.
  19. Osovskiy S. Neyronnye seti dlya obrabotki informatsii [Neural networks for processing information]. Moscow: Finansy i Statistika Publ., 2002. 344 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies