Terminal control of aerospace system subhypersonic first stage


Cite item

Full Text

Abstract

The problem of forming command control of the subhypersonic first stage of an aerospace system in climb is considered. Passive motion of spacecraft in conditions of maximum atmospheric density disturbance is analyzed. Achieving the prescribed value of the angle of climb is the terminal motion condition. Terminal height is a controlled value. An algorithm of terminal control for the formation of command value of aerodynamic lift coefficient is proposed. The Newton method with one or more iterations at the correction step is used in determining command control. The serviceability and efficiency of the algorithm compensating the influence of variations of atmospheric density on the preset terminal altitude condition of spacecraft motion are analyzed. The results of simulating spacecraft motion with terminal control for maximally «rarefied» and maximally «dense» atmosphere are discussed. Possible improvement of the terminal control algorithm is suggested. 

About the authors

V. L. Balakin

Samara National Research University

Author for correspondence.
Email: balakin@ssau.ru

Doctor of Science (Engineering), Professor
Professor of the Department of Automatic Systems of Power Plants

Russian Federation

A. V. Kovalyov

Samara National Research University

Email: ssau@ssau.ru

Postgraduate student

Russian Federation

References

  1. Young D.A., Olds J.R. Responsive Access Small Cargo Affordable Launch (RASCAL) Independent Performance Evaluation. 13th International Space Planes and Hypersonics Systems and Technologies Conference (May 2005, Capua, Italy). 23 p. Available at: http://hdl.handle.net/1853/8372.
  2. doi: 10.2514/6.2005-3241.
  3. Urschel P.H., Cox T.H. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs. AIAA Atmospheric Flight Mechanics Conference and Exhibit (August 2003, Austin, United States). doi: 10.2514/6.2003-5544
  4. Nechaev Yu.N. Silovye ustanovki giperzvukovykh i vozdushno-kosmicheskikh letatel'nykh apparatov [Power plants of hypersonic and space-air vehicles] Moscow: Akademiya Kosmonavtiki im. K.E. Tsiolkovskogo Publ., 1996. 214 p.
  5. Hague C.N., Siegenthaler E., Rothman J. Enabling responsive space: F-15 microsatellite launch vehicle. Aerospace Conference Proceedings. 2003. V. 6. P. 2703-2708. doi: 10.1109/AERO.2003.1235195
  6. Balashov V.V., Buzulukov V.M., Davidson B.Kh., Smirnov A.V. Vozmozhnosti ispol'zovaniya sverkhzvukovykh samoletov-nositeley dlya zapuska malykh, mini- i mikrosputnikov. Tezisy dokladov ХХХVIII chteniy, posvyashchennykh razrabotke nauchnogo naslediya i razvitiyu idey K.E. Tsiolkovskogo. Kaluga: Gosudarstvennyy muzey istorii kosmonavtiki im. K.E. Tsiolkovskogo Publ., 2003. P. 61-63. (In Russ.)
  7. Balakin V.L., Potapov V.I. Nominal motion control program in a supersonic carrier aircraft. Vestnik of the Samara State Aerospace University. 2011. No. 6 (30). P. 15-21. (In Russ.)
  8. Potapov V.I. Control programs and motion trajectories of hypersonic first stage of an aerospace system. Vestnik of the Samara State Aerospace University. 2010. No. 1 (21). P. 75-83. (In Russ.)
  9. Shkol'nyy E.P., Mayboroda A. Atmosfera i upravlenie dvizheniem letatel'nykh apparatov [Atmosphere and aircraft motion control]. Leningrad: Gidrometeoizdat Publ., 1973. 308 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies