Simulation of the process of angular rate damping of the SamSat-218D nanosatellite after separation from the launching-transporting container


Cite item

Full Text

Abstract

The paper presents an algorithm of damping the initial angular rate of the SamSat-218D nanosatellite after its separation from the transporting-launching container. Three mutually orthogonal magnetic coils are used as actuators that provide damping of the initial angular rate on board the nanosatellite. The traditional B-dot algorithm is used as the damping algorithm. Two operating modes are possible for the B-dot algorithm: a continuous mode and a discrete one. As the continuous operating mode of the magnetic coils onboard the nanosatellite in orbital flight is inexpedient because of the necessity of measuring the Earth magnetic field intensity vector the discrete mode of operating of the algorithm of damping the initial angular velocities acquired by the nanosatellite after its separation from the transporting-launching container is analyzed. The results of the mathematical simulation during the analysis of choosing discretization intervals in the algorithm of damping the initial angular rate of the SamSat-218D nanosatellite are presented.

About the authors

M. E. Melnik

Samara State Aerospace University

Author for correspondence.
Email: mashagrigoreva@gmail.com

Postgraduate student

Russian Federation

References

  1. Kovalenko A.P. Magnitnye sistemy upravleniya kosmicheskimi letatel'nymi apparatami [Magnetic systems of spacecraft control]. Moscow: Mashinostroenie Publ., 1975. 248 p.
  2. Beletskiy V.V. Dvizhenie iskusstvennogo sputnika otnositel'no tsentra mass [Motion of an artificial satellite about the centre of mass]. Moscow: Nauka Publ., 1965. 416 p.
  3. Belokonov I.V., Kramlikh A.V., Timbai I.A. Low-orbital transformable nanosatellite: research of the dynamics and possibilities of navigational and communication problems solving for passive aerodynamic stabilization. Proceedings of 2th IAA Conference on Dynamics and Control of Space System. 2014. V. 153. 15 p.
  4. Popov V.I. Sistemy orientatsii i stabilizatsii kosmicheskikh apparatov [Systems of spacecraft orientation and stabilization]. Moscow: Mashinostroenie Publ., 1986. 184 p.
  5. Whitford C., Forrest D. The CATSAT Attitude Control System. 12th AIAA/USU Conference on Small Satellites.
  6. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2252&context=smallsat

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies