Methods and means of accelerating particles of natural and technogenic origin
- Authors: Semkin N.D.1, Sukhachev K.I.1, Dorofeev A.S.1
-
Affiliations:
- Samara State Aerospace University
- Issue: Vol 14, No 4 (2015)
- Pages: 171-191
- Section: ELECTRONICS, MEASURING EQUIPMENT, RADIO ENGINEERING AND COMMUNICATION
- URL: https://journals.ssau.ru/vestnik/article/view/2930
- DOI: https://doi.org/10.18287/2412-7329-2015-14-4-171-191
- ID: 2930
Cite item
Full Text
Abstract
Various types of accelerators of solid particulates of natural and technogenic origin are analyzed in the paper. We consider the structure and principles of operation of micron- and millimeter-scale accelerators with the center of velocity distribution of about 20 km/s: electrostatic, electromagnetic, pulsed, rail electromagnetic, solenoid coil and electric-gas dynamics, combined installations. Light-gas, explosive, gas discharge and electromagnetic accelerators with different principles of action are reviewed. The focus is on the electromagnetic techniques of acceleration that are most promising for acceleration of macrobodies to supervelocities. The advantages and disadvantages of different types of accelerators of solids are pointed out. The usability of different designs of accelerators to simulate collisions of orbital meteorite particles and space debris with the surface of the spacecraft is analyzed. Problems emerging in the construction and operation of accelerators of various types are specified and solutions to these problems are presented. The results of experiments in the acceleration of solid micron- and millimeter-wave solids using accelerators of various types and methods of structural optimization of particle accelerators with a view to increasing their efficiency and the speed of the accelerated body are presented. The evolution of accelerators and the main directions of their further improvement are shown.
About the authors
N. D. Semkin
Samara State Aerospace University
Author for correspondence.
Email: semkin@ssau.ru
Doctor of Science (Engineering)
Head of the Department of Design and Technology of Electronic Systems and Devices
K. I. Sukhachev
Samara State Aerospace University
Email: kir.sukhachev@gmail.com
Postgraduate student, the Department of Design and Technology of Electronic Systems and Devices
Russian FederationA. S. Dorofeev
Samara State Aerospace University
Email: alexandrdorofeev.ikp@yandex.ru
Postgraduate student, the Department of Design and Technology of Electronic Systems and Devices
Russian FederationReferences
- Manzon B.M. Acceleration of macroparticles for controlled thermonuclear fusion. Soviet Physics Uspekhi. 1981. V. 24, Iss. 8. P. 662-678. doi: 10.1070/PU1981v024n08ABEH004832
- Harrison E.R. Alternative Approach to the Problem of Producing Controlled Thermonuclear Power. Physical Review Letters. 1963. V. 11, Iss. 12. P. 535-537. doi: 10.1103/physrevlett.11.535
- Friichtenicht J.F. Two-million-Volt electrostatic accelerator for hypervelocity research. Review of Scientific Instruments. 1962. V. 33, Iss. 2. P. 209-212. doi: 10.1063/1.1746548
- Hasegawa S., Fujiwara A., Morishige K., Yano H., Nishimura T., Sasaki S., Hamabe Y., Ohashi H., Nogami K., Kawamura T., Iwai T., Kobayashi K., Shibata H. Microparticle acceleration for hypervelocity experiments by A 3.75MV van de Graaff accelerator and a 100KV electrostatic accelerator in Japan. International Journal of Impact Engineering. 2001. V. 26, Iss. 1-10. P. 299-308. doi: 10.1016/s0734-743x(01)00098-7
- Friichtenicht J.F. Micrometeoroid simulation using nuclear accelerator techniques. Nuclear Instruments and Methods. 1964. V. 28, Iss. 1. P. 70-78. doi: 10.1016/ 0029-554x(64)90351-9
- Becker D.G., Friichtenicht J.F. Measurement and Interpretation of the Luminous efficiencies of Iron and Copper Simulated micrometeors. The Astrophysical Journal. 1971. V. 166. P. 699-716. doi: 10.1086/150994
- Becker D.G., Friichtenicht J.F., Hamermesh B., Langmuir R.V. Variable-Ferquence Radially-Stable Micrometoroid Accelerator. Review of Scientific Instruments. 1965. V. 36. P. 1480-1481. doi: 10.1063/1.1719360
- Sukhachev K.I., Semkin N.D., Piyakov A.V. Dust particle accelerator pulse. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2013. V. 16, no. 2. P. 70-78. (In Russ.)
- Sukhachev K.I., Semkin N.D., Piyakov A.V. Impul'snyy uskoritel' tverdykh chastits [Pulsed accelerator of solid particles]. Patent RF, no. 2523666, 2014. (Publ. 20.07.2014, bull. no. 20).
- Semkin N.D., Piyakov A.V., Voronov K.E., Pomel'nikov R.A. Uskoritel' vysokoskorostnykh tverdykh chastits [High-speed solid-particle acceleratorelerator high solids]. Patent RF, no. 2205525, 2003. (Publ. 27.05.2003, bull. no. 15).
- Semkin N.D., Piyakov A.V., Piyakov I.V., Sukhachev K.I. Uskoritel' vysokoskorostnykh tverdykh chastits [Acceleratorofhigh-speed solid particles]. Patent RF, no. 2447626, 2010. (Publ. 10.04.2012, bull. no. 10).
- Semkin N.D., Piyakov A.V., Piyakov I.V., Kashtanov E.V. Tsiklicheskiy uskoritel' pylevykh zaryazhennykh chastits [Charged dust particle cyclic accelerator]. Patent RF, no. 2456781, 2012. (Publ. 20.07.2012, bull. no. 20).
- Akishin A.I., Novikov L.S. Metodika i oborudovanie imitatsionnykh ispytaniy materialov kosmicheskikh apparatov [Methods and equipment for simulation tests of spacecraft materials]. Moscow: Moscovskiy universitet Publ., 1990. 90 p.
- Semkin N.D., Piyakov A.V., Voronov K.E., Shepelev S.M., Bogoyavlenskii N.L. A Charged Dust Particle Injector. Instruments and Experimental Techniques. 2006. V. 49, Iss. 3. P. 440-445. doi: 10.1134/s0020441206030262
- Semkin N.D., Piyakov A.V., Bragin V.V., Vidmanov A.S., Sukhachev K.I. Istochnik zaryazhennykh pylevykh chastits [The source of charged dust particles]. Patent RF, no. 136668, 2014. (Publ. 10.01.2014, bull. no.1).
- Holland L.D. The DES railgan facility at CEM-UT. IEEE Transaction on Magnetics. 1984. V. 20, Iss. 2. P. 256-269. doi.org/10.1109/tmag.1984.1063047
- Semkin N.D., Voronov K.E., Telegin A.M., Izyumov M.V., Sukhachev K.I. Modeling of debris particles with electromagnetic and electroplasma accelerator. Phisycs of Wave Processes and Radio Systems. 2012. V. 14, no. 1. P. 79-85 (In Russ.)
- Fowler C.M., Peterson D.R., Caird R.S., Erickson D.J., Freeman B.I., King J.C. Explosive flux compression for railgun power sources. IEEE Transaction on Magnetics. 1982. V. 18, Iss. 1. P. 64-67. doi: 10.1109/tmag.1982.1061778
- Anisimov A.G., Bashkatov Yu.L., Shvetsov G.A. Explosive magnetic generators for power railgun accelerators. Combustion, Explosion, and Shock Waves. 1986. V. 22, no. 4. P. 457-462. doi: 10.1007/BF00862892
- Cowan M. Pulsed power for electromagnetic launching. IEEE Transaction of Magnetics. 1982. V. 18, no. 1. P. 145-150. doi: 10.1109/tmag.1982.1061774
- Ford R.D., Jankins D., Lupton W.H., Vitkovitsky J.M. Pulsed High-Voltage and high-current outputs from Homopolar Energy Storage System. Review Scientific instruments. 1981. V. 52, no. 5. P. 694-697. doi: 10.1063/1.1136665
- Koltern W.J., Jamet F. Electric Energy Gun technology: Status of the French-German-Netherlands Programme. IEEE Transaction on Magnetics. 1999. V. 35, no. 1. P. 25-39. doi: 10.1109/20.738370
- Rashleigh S.C., Marshall R.A. Electromagnetic accelerator of macroparticles to high velocities. Journal of Applied Physics. 1978. V. 48, no. 4. P. 2540-2552. doi: 10.1063/1.325107
- Delsasso L.A. Japanese Experiments with the Electromagnetic Gun. U.S. Army Technical Intelligence. 1946. V. 17. P. 123-186.
- Shvetsov G.A., Titov V.M., Anisimov G.A. Railgun accelerators particulates Part 1. General characteristics. Report of the Fourth International Conference on generating Megagauss fields and related experiments. USA. Santa Fe, 1986. P. 98-123. (In Russ.)
- Drobyshevskii E.M., Zhukov B.G., Kurakin R.O., Rozov S.I., Beloborodyy M.V., Latypov V.G. Role of the pinch effect in a high-velocity metallic contact with a high current. Technical Physics Letters. 1999. V. 25, no. 3. P. 245-247.
- Shvetsov G.A., Titov V.M., Anisimov G.A. Railgun accelerators particulate Part 2. General characteristics. Report of the Fourth International Conference on generating Megagauss fields and related experiments. USA. Santa Fe, 1986. P. 140-156. (In Russ.)
- Barton R.J., Goldstein S.A., Tidman D.A., Wang S.G., Winsor N.K., Witherpoon F.D. EMET Technology for Rail Launchers. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1410-1415. doi: 10.1109/tmag.1986.1064670
- Bashkatov Yu.L., Shvetsov G.A. General energy relations for rail guns. Journal of Applied Mechanics and Technical Physics. 1987. V. 28, no. 2. P. 316-320. doi: 10.1007/BF00918741
- Chistyakov V.P., Shvetsov G.A. Critical current density in rail accelerators with a plasma piston. Journal of Applied Mechanics and Technical Physics. 1988. V. 29, no. 1. P. 19-25. doi: 10.1007/BF00909685
- Nosov G.V. Defining the parameters of the railgun. Part 1. Calculation at constant current density. Bulletin of the Tomsk Polytechnic University. 2013. V. 322, no. 4. P. 65-69 (In Russ.)
- Nosov G.V. Defining the parameters of the railgun. Part 2. Calculation of a sinusoidal current. Bulletin of the Tomsk Polytechnic University. 2013. V. 322, no. 4. P. 70-74 (InRuss.)
- Nosov G.V., Luss A.A. Defining the parameters of the railgun. Part 3. Calculation of non-sinusoidal currents with periodic. Bulletin of the Tomsk Polytechnic University. 2013. V. 323, no. 4. P. 95-100 (InRuss.)
- Davidson R.F., Cook W.A., Robem D.A., Schnurr N.S. Predicting Bore Deformation and Launcher Stresses in Railgun. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1435-1440. doi: 10.1109/tmag.1986.1064668
- Kotas J.F., Buderjahn C.A., Littman F.D. A Parametric Evalution of Railgun Augmentation. IEEE Transaction of Magnetics. 1987. V. 22, no. 6. P. 1573-1577. doi: 10.1109/tmag.1986.1064729
- Peterson D.R., Weeks D.A., Zowarka R.S., Cook R.W., Weldon W.F. Testing of a High Performance, Precision-Bore Railgun. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1662-1668. doi: 10.1109/tmag.1986.1064655
- Marshall R.A. Structure of Plasma Armature of Railgun. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1609-1612. doi: 10.1109/tmag.1986.1064672
- Kawashima N., Yamori A., Kohno M., Kubo H., Teii S., Himeno S. Electrothermal Accelerators A brief overview on the work performed within the trilateral European Electric Gun Program. Proceedings of 5th Europian Symposium on Electromagnetic Launch Technology. 1995. V. 2. P. 293-301.
- Parker J.V. Why Plasma Armature Railguns don't work (and what can be done about it). IEEE Transaction of Magnetics. 1989. V. 25, no. 1. P. 418-424. doi: 10.1109/20.22574
- Postnikov B.V., Fomichev V.P., Fomin V.M. Two-Stage Railgun Pinched Plasma Armature. IEEE Transactions on Magnetics. 2002. V. 39, no. 1. P. 4-11.
- Shurupov A.V., Lebedev E.F., Luzganov S.N., Ostashev V.E., Polistchuk V.P., Fortov V.E. Extreme Regimes of Railgun Launcher with Plasma Armature. IEEE Transactions on Magnetics. 2002. V. 28, no. 2. P. 36-41.
- Zhukov B.G., Kurakin R.O., Sakharov V.A., Bobashev S.V., Ponyaev S.A., Reznikov B.I., Rozov S.I. Synchronous acceleration of two millimeter-sized bodies up to hypersonic velocities in a multichannel railgun. Technical Physics Letters. 2013. V.39, no. 12. P. 1057-1059. doi: 10.1134/S1063785013120146
- Kartsev V.P. Magnit za tri tysyacheletie [Magnet for three millennia]. Moscow: Energoatomizdat Publ., 1988. 268 p.
- Kapiza P., Kostenko M. Electrical Impuls Generator. British patent № 254, 349. Application date: Dec. 30, 1924. Complite accepted: June 20.1926.
- Snow W.R., Dunbar R.S., Kulby J.A., O’Neil G.R. Mass driver two: A status report. IEEE Transaction of Magnetics. 1982. V. 18, no. 1. P. 127-134. doi: 10.1109/tmag.1982.1061777
- Liao M., Zabar Z., Gzarkowski D., Levi E., Birenaum L. On the Design of a Coilgun as a papid-Fire Grenade Launcher. IEEE Transaction of Magnetics. 1999. V. 35, no. 1. P. 148-153. doi: 10.1109/20.738393
- Vasil'ev E.V. Mnogostupenchatyy uskoritel' s begushchim pereklyucheniem solenoidov [Multistage accelerator with series commutation of solenoids]. Patent RF, no. 2267074, 2005. (Publ. 27.12.2005, bull. no. 36).
- Sukhachev K.I., Semkin N.D., Piyakov A.V., Voronov K.E. Rezonansnyy elektromagnitnyy uskoritel' [Resonance electromagnetic accelerator]. Patent RF, no. 2466340, 2012. (Publ. 10.11.2012, bull. no. 31).
- Sukhachev K.I., Semkin N.D., Piyakov A.V. Increase of efficiency of the resonant electromagnetic accelerator. Physics of Wave Processes and Radio Systems. 2013. V. 16, no. 4. P. 63-68 (In Russ.)
- Sukhachev K.I., Semkin N.D. Analysis of potentialities of coil electromagnetic accelerators for the accelerating of ferromagnetic particles. Vestnik of the Samara State Aerospace University. 2013. No. 3(41), part 1. P. 235-247 (In Russ.)
- Sukhachev K.I., Semkin N.D., Piyakov A.V., Voronov K.E. Resonant method of accelerating non-magnetic materials. Vestnik of the Samara State Aerospace University. 2012. No. 2(33). P. 126-132. (In Russ.)
- Bresie D.A., Bacon J.L., Kennington K.S., Ingram S.K., Weeks A.A., SPEAR coilgun. IEEE Transaction of Magnetics. 1995. V. 31, no. 1. P. 467-472. doi: 10.1109/20.364645
- Weh H., May H. Electromagnetic accelerator in flat coil arrangement: Patent US № 5294850. Mar. 15. 1994.
- Kolm H., Mongean P. Basic principles of coaxial launch technology. IEEE Transaction of Magnetics. 1984. V. 20, no. 2. P. 227-230. doi: 10.1109/tmag.1984.1063050
- Stollenwerk E.J, Perry R.W. Preliminary planning for a hypervelocity aerolallistic range at AEPC. AGAPDograph. 1959. V. 32. P. 200.
- Fizika bystroprotekayushchikh protsessov. T. 2 [Physics of fast processes. V.2]. Moscow: Mir Publ., 1971. 252 p.
- Massey D.W., Tidman D.A., Goldstein S. and Napier P. Experiments with a 0,5 Megajoule Electric Gun System for fairing hypervelocity Projectiles from plasma cartridges. Final Report GTD 86-1. GT-Devices. Alexandria. VA. 1986. P. 150-154.
- Tekhnika giperzvukovykh issledovaniy: sb. statey [A technique of hypersonic investigations]. Moscow: Mir Publ., 1964. 524 p.
- Govell V.Zh., Orr V.R., Krill A.M. Ispol'zovanie elektricheskikh razryadov v legkom gaze dlya uvelicheniya skorosti dvizheniya modeli, soobshchaemoy ey gazovoy pushkoy [Using electrical discharges in a light gas to increase the speed imparted to the model by a gas gun]. Moscow: Mashinostroenie Publ., 1965. 384 p.
- Gerasimov D.Yu., Sivkov A.A. Koaksial'nyy magnitoplazmennyy uskoritel' [Coaxial magneto plasma accelerator]. Patent RF, no. 2498542, 2013. (Publ. 10.11.2013, bull. no. 31).
- Sivkov A.A. Hybrid Electromagnetic System for Acceleration of Solids. Journal of Applied Mechanics and Technical Physics. 2001. V. 42, no. 1. P. 1-9.
- Hawke R.S., Dixon W.R., Kang S.W., McCallen R.C., Susoeff A.R., Assay J.R., Shahinpoor M. The Importance of high injection velocity to reduce plasma armature growth and drag in hypervelocity railguns. Proceedings of the 14th international conference on Plasma science. Arlington. VA, USA. 1987. P. 122-143.
- Hamilton G. Electromagnetic Launcher Facility Begins Operation in California. Aviation Week and Space Technology. 1986. V. 124, no. 4. P. 92-112.