Methods and means of accelerating particles of natural and technogenic origin

Abstract

Various types of accelerators of solid particulates of natural and technogenic origin are analyzed in the paper. We consider the structure and principles of operation of micron- and millimeter-scale accelerators with the center of velocity distribution of about 20 km/s: electrostatic, electromagnetic, pulsed, rail electromagnetic, solenoid coil and electric-gas dynamics, combined installations. Light-gas, explosive, gas discharge and electromagnetic accelerators with different principles of action are reviewed. The focus is on the electromagnetic techniques of acceleration that are most promising for acceleration of macrobodies to supervelocities. The advantages and disadvantages of different types of accelerators of solids are pointed out. The usability of different designs of accelerators to simulate collisions of orbital meteorite particles and space debris with the surface of the spacecraft is analyzed. Problems emerging in the construction and operation of accelerators of various types are specified and solutions to these problems are presented. The results of experiments in the acceleration of solid micron- and millimeter-wave solids using accelerators of various types and methods of structural optimization of particle accelerators with a view to increasing their efficiency and the speed of the accelerated body are presented. The evolution of accelerators and the main directions of their further improvement are shown.

About the authors

N. D. Semkin

Samara State Aerospace University

Author for correspondence.
Email: semkin@ssau.ru

Doctor of Science (Engineering)
Head of the Department of Design and Technology of Electronic Systems and Devices

Russian Federation

K. I. Sukhachev

Samara State Aerospace University

Email: kir.sukhachev@gmail.com

Postgraduate student, the Department of Design and Technology of Electronic Systems and Devices

Russian Federation

A. S. Dorofeev

Samara State Aerospace University

Email: alexandrdorofeev.ikp@yandex.ru

Postgraduate student, the Department of Design and Technology of Electronic Systems and Devices

Russian Federation

References

  1. Manzon B.M. Acceleration of macroparticles for controlled thermonuclear fusion. Soviet Physics Uspekhi. 1981. V. 24, Iss. 8. P. 662-678. doi: 10.1070/PU1981v024n08ABEH004832
  2. Harrison E.R. Alternative Approach to the Problem of Producing Controlled Thermonuclear Power. Physical Review Letters. 1963. V. 11, Iss. 12. P. 535-537. doi: 10.1103/physrevlett.11.535
  3. Friichtenicht J.F. Two-million-Volt electrostatic accelerator for hypervelocity research. Review of Scientific Instruments. 1962. V. 33, Iss. 2. P. 209-212. doi: 10.1063/1.1746548
  4. Hasegawa S., Fujiwara A., Morishige K., Yano H., Nishimura T., Sasaki S., Hamabe Y., Ohashi H., Nogami K., Kawamura T., Iwai T., Kobayashi K., Shibata H. Microparticle acceleration for hypervelocity experiments by A 3.75MV van de Graaff accelerator and a 100KV electrostatic accelerator in Japan. International Journal of Impact Engineering. 2001. V. 26, Iss. 1-10. P. 299-308. doi: 10.1016/s0734-743x(01)00098-7
  5. Friichtenicht J.F. Micrometeoroid simulation using nuclear accelerator techniques. Nuclear Instruments and Methods. 1964. V. 28, Iss. 1. P. 70-78. doi: 10.1016/ 0029-554x(64)90351-9
  6. Becker D.G., Friichtenicht J.F. Measurement and Interpretation of the Luminous efficiencies of Iron and Copper Simulated micrometeors. The Astrophysical Journal. 1971. V. 166. P. 699-716. doi: 10.1086/150994
  7. Becker D.G., Friichtenicht J.F., Hamermesh B., Langmuir R.V. Variable-Ferquence Radially-Stable Micrometoroid Accelerator. Review of Scientific Instruments. 1965. V. 36. P. 1480-1481. doi: 10.1063/1.1719360
  8. Sukhachev K.I., Semkin N.D., Piyakov A.V. Dust particle accelerator pulse. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2013. V. 16, no. 2. P. 70-78. (In Russ.)
  9. Sukhachev K.I., Semkin N.D., Piyakov A.V. Impul'snyy uskoritel' tverdykh chastits [Pulsed accelerator of solid particles]. Patent RF, no. 2523666, 2014. (Publ. 20.07.2014, bull. no. 20).
  10. Semkin N.D., Piyakov A.V., Voronov K.E., Pomel'nikov R.A. Uskoritel' vysokoskorostnykh tverdykh chastits [High-speed solid-particle acceleratorelerator high solids]. Patent RF, no. 2205525, 2003. (Publ. 27.05.2003, bull. no. 15).
  11. Semkin N.D., Piyakov A.V., Piyakov I.V., Sukhachev K.I. Uskoritel' vysokoskorostnykh tverdykh chastits [Acceleratorofhigh-speed solid particles]. Patent RF, no. 2447626, 2010. (Publ. 10.04.2012, bull. no. 10).
  12. Semkin N.D., Piyakov A.V., Piyakov I.V., Kashtanov E.V. Tsiklicheskiy uskoritel' pylevykh zaryazhennykh chastits [Charged dust particle cyclic accelerator]. Patent RF, no. 2456781, 2012. (Publ. 20.07.2012, bull. no. 20).
  13. Akishin A.I., Novikov L.S. Metodika i oborudovanie imitatsionnykh ispytaniy materialov kosmicheskikh apparatov [Methods and equipment for simulation tests of spacecraft materials]. Moscow: Moscovskiy universitet Publ., 1990. 90 p.
  14. Semkin N.D., Piyakov A.V., Voronov K.E., Shepelev S.M., Bogoyavlenskii N.L. A Charged Dust Particle Injector. Instruments and Experimental Techniques. 2006. V. 49, Iss. 3. P. 440-445. doi: 10.1134/s0020441206030262
  15. Semkin N.D., Piyakov A.V., Bragin V.V., Vidmanov A.S., Sukhachev K.I. Istochnik zaryazhennykh pylevykh chastits [The source of charged dust particles]. Patent RF, no. 136668, 2014. (Publ. 10.01.2014, bull. no.1).
  16. Holland L.D. The DES railgan facility at CEM-UT. IEEE Transaction on Magnetics. 1984. V. 20, Iss. 2. P. 256-269. doi.org/10.1109/tmag.1984.1063047
  17. Semkin N.D., Voronov K.E., Telegin A.M., Izyumov M.V., Sukhachev K.I. Modeling of debris particles with electromagnetic and electroplasma accelerator. Phisycs of Wave Processes and Radio Systems. 2012. V. 14, no. 1. P. 79-85 (In Russ.)
  18. Fowler C.M., Peterson D.R., Caird R.S., Erickson D.J., Freeman B.I., King J.C. Explosive flux compression for railgun power sources. IEEE Transaction on Magnetics. 1982. V. 18, Iss. 1. P. 64-67. doi: 10.1109/tmag.1982.1061778
  19. Anisimov A.G., Bashkatov Yu.L., Shvetsov G.A. Explosive magnetic generators for power railgun accelerators. Combustion, Explosion, and Shock Waves. 1986. V. 22, no. 4. P. 457-462. doi: 10.1007/BF00862892
  20. Cowan M. Pulsed power for electromagnetic launching. IEEE Transaction of Magnetics. 1982. V. 18, no. 1. P. 145-150. doi: 10.1109/tmag.1982.1061774
  21. Ford R.D., Jankins D., Lupton W.H., Vitkovitsky J.M. Pulsed High-Voltage and high-current outputs from Homopolar Energy Storage System. Review Scientific instruments. 1981. V. 52, no. 5. P. 694-697. doi: 10.1063/1.1136665
  22. Koltern W.J., Jamet F. Electric Energy Gun technology: Status of the French-German-Netherlands Programme. IEEE Transaction on Magnetics. 1999. V. 35, no. 1. P. 25-39. doi: 10.1109/20.738370
  23. Rashleigh S.C., Marshall R.A. Electromagnetic accelerator of macroparticles to high velocities. Journal of Applied Physics. 1978. V. 48, no. 4. P. 2540-2552. doi: 10.1063/1.325107
  24. Delsasso L.A. Japanese Experiments with the Electromagnetic Gun. U.S. Army Technical Intelligence. 1946. V. 17. P. 123-186.
  25. Shvetsov G.A., Titov V.M., Anisimov G.A. Railgun accelerators particulates Part 1. General characteristics. Report of the Fourth International Conference on generating Megagauss fields and related experiments. USA. Santa Fe, 1986. P. 98-123. (In Russ.)
  26. Drobyshevskii E.M., Zhukov B.G., Kurakin R.O., Rozov S.I., Beloborodyy M.V., Latypov V.G. Role of the pinch effect in a high-velocity metallic contact with a high current. Technical Physics Letters. 1999. V. 25, no. 3. P. 245-247.
  27. Shvetsov G.A., Titov V.M., Anisimov G.A. Railgun accelerators particulate Part 2. General characteristics. Report of the Fourth International Conference on generating Megagauss fields and related experiments. USA. Santa Fe, 1986. P. 140-156. (In Russ.)
  28. Barton R.J., Goldstein S.A., Tidman D.A., Wang S.G., Winsor N.K., Witherpoon F.D. EMET Technology for Rail Launchers. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1410-1415. doi: 10.1109/tmag.1986.1064670
  29. Bashkatov Yu.L., Shvetsov G.A. General energy relations for rail guns. Journal of Applied Mechanics and Technical Physics. 1987. V. 28, no. 2. P. 316-320. doi: 10.1007/BF00918741
  30. Chistyakov V.P., Shvetsov G.A. Critical current density in rail accelerators with a plasma piston. Journal of Applied Mechanics and Technical Physics. 1988. V. 29, no. 1. P. 19-25. doi: 10.1007/BF00909685
  31. Nosov G.V. Defining the parameters of the railgun. Part 1. Calculation at constant current density. Bulletin of the Tomsk Polytechnic University. 2013. V. 322, no. 4. P. 65-69 (In Russ.)
  32. Nosov G.V. Defining the parameters of the railgun. Part 2. Calculation of a sinusoidal current. Bulletin of the Tomsk Polytechnic University. 2013. V. 322, no. 4. P. 70-74 (InRuss.)
  33. Nosov G.V., Luss A.A. Defining the parameters of the railgun. Part 3. Calculation of non-sinusoidal currents with periodic. Bulletin of the Tomsk Polytechnic University. 2013. V. 323, no. 4. P. 95-100 (InRuss.)
  34. Davidson R.F., Cook W.A., Robem D.A., Schnurr N.S. Predicting Bore Deformation and Launcher Stresses in Railgun. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1435-1440. doi: 10.1109/tmag.1986.1064668
  35. Kotas J.F., Buderjahn C.A., Littman F.D. A Parametric Evalution of Railgun Augmentation. IEEE Transaction of Magnetics. 1987. V. 22, no. 6. P. 1573-1577. doi: 10.1109/tmag.1986.1064729
  36. Peterson D.R., Weeks D.A., Zowarka R.S., Cook R.W., Weldon W.F. Testing of a High Performance, Precision-Bore Railgun. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1662-1668. doi: 10.1109/tmag.1986.1064655
  37. Marshall R.A. Structure of Plasma Armature of Railgun. IEEE Transaction of Magnetics. 1986. V. 22, no. 6. P. 1609-1612. doi: 10.1109/tmag.1986.1064672
  38. Kawashima N., Yamori A., Kohno M., Kubo H., Teii S., Himeno S. Electrothermal Accelerators A brief overview on the work performed within the trilateral European Electric Gun Program. Proceedings of 5th Europian Symposium on Electromagnetic Launch Technology. 1995. V. 2. P. 293-301.
  39. Parker J.V. Why Plasma Armature Railguns don't work (and what can be done about it). IEEE Transaction of Magnetics. 1989. V. 25, no. 1. P. 418-424. doi: 10.1109/20.22574
  40. Postnikov B.V., Fomichev V.P., Fomin V.M. Two-Stage Railgun Pinched Plasma Armature. IEEE Transactions on Magnetics. 2002. V. 39, no. 1. P. 4-11.
  41. Shurupov A.V., Lebedev E.F., Luzganov S.N., Ostashev V.E., Polistchuk V.P., Fortov V.E. Extreme Regimes of Railgun Launcher with Plasma Armature. IEEE Transactions on Magnetics. 2002. V. 28, no. 2. P. 36-41.
  42. Zhukov B.G., Kurakin R.O., Sakharov V.A., Bobashev S.V., Ponyaev S.A., Reznikov B.I., Rozov S.I. Synchronous acceleration of two millimeter-sized bodies up to hypersonic velocities in a multichannel railgun. Technical Physics Letters. 2013. V.39, no. 12. P. 1057-1059. doi: 10.1134/S1063785013120146
  43. Kartsev V.P. Magnit za tri tysyacheletie [Magnet for three millennia]. Moscow: Energoatomizdat Publ., 1988. 268 p.
  44. Kapiza P., Kostenko M. Electrical Impuls Generator. British patent № 254, 349. Application date: Dec. 30, 1924. Complite accepted: June 20.1926.
  45. Snow W.R., Dunbar R.S., Kulby J.A., O’Neil G.R. Mass driver two: A status report. IEEE Transaction of Magnetics. 1982. V. 18, no. 1. P. 127-134. doi: 10.1109/tmag.1982.1061777
  46. Liao M., Zabar Z., Gzarkowski D., Levi E., Birenaum L. On the Design of a Coilgun as a papid-Fire Grenade Launcher. IEEE Transaction of Magnetics. 1999. V. 35, no. 1. P. 148-153. doi: 10.1109/20.738393
  47. Vasil'ev E.V. Mnogostupenchatyy uskoritel' s begushchim pereklyucheniem solenoidov [Multistage accelerator with series commutation of solenoids]. Patent RF, no. 2267074, 2005. (Publ. 27.12.2005, bull. no. 36).
  48. Sukhachev K.I., Semkin N.D., Piyakov A.V., Voronov K.E. Rezonansnyy elektromagnitnyy uskoritel' [Resonance electromagnetic accelerator]. Patent RF, no. 2466340, 2012. (Publ. 10.11.2012, bull. no. 31).
  49. Sukhachev K.I., Semkin N.D., Piyakov A.V. Increase of efficiency of the resonant electromagnetic accelerator. Physics of Wave Processes and Radio Systems. 2013. V. 16, no. 4. P. 63-68 (In Russ.)
  50. Sukhachev K.I., Semkin N.D. Analysis of potentialities of coil electromagnetic accelerators for the accelerating of ferromagnetic particles. Vestnik of the Samara State Aerospace University. 2013. No. 3(41), part 1. P. 235-247 (In Russ.)
  51. Sukhachev K.I., Semkin N.D., Piyakov A.V., Voronov K.E. Resonant method of accelerating non-magnetic materials. Vestnik of the Samara State Aerospace University. 2012. No. 2(33). P. 126-132. (In Russ.)
  52. Bresie D.A., Bacon J.L., Kennington K.S., Ingram S.K., Weeks A.A., SPEAR coilgun. IEEE Transaction of Magnetics. 1995. V. 31, no. 1. P. 467-472. doi: 10.1109/20.364645
  53. Weh H., May H. Electromagnetic accelerator in flat coil arrangement: Patent US № 5294850. Mar. 15. 1994.
  54. Kolm H., Mongean P. Basic principles of coaxial launch technology. IEEE Transaction of Magnetics. 1984. V. 20, no. 2. P. 227-230. doi: 10.1109/tmag.1984.1063050
  55. Stollenwerk E.J, Perry R.W. Preliminary planning for a hypervelocity aerolallistic range at AEPC. AGAPDograph. 1959. V. 32. P. 200.
  56. Fizika bystroprotekayushchikh protsessov. T. 2 [Physics of fast processes. V.2]. Moscow: Mir Publ., 1971. 252 p.
  57. Massey D.W., Tidman D.A., Goldstein S. and Napier P. Experiments with a 0,5 Megajoule Electric Gun System for fairing hypervelocity Projectiles from plasma cartridges. Final Report GTD 86-1. GT-Devices. Alexandria. VA. 1986. P. 150-154.
  58. Tekhnika giperzvukovykh issledovaniy: sb. statey [A technique of hypersonic investigations]. Moscow: Mir Publ., 1964. 524 p.
  59. Govell V.Zh., Orr V.R., Krill A.M. Ispol'zovanie elektricheskikh razryadov v legkom gaze dlya uvelicheniya skorosti dvizheniya modeli, soobshchaemoy ey gazovoy pushkoy [Using electrical discharges in a light gas to increase the speed imparted to the model by a gas gun]. Moscow: Mashinostroenie Publ., 1965. 384 p.
  60. Gerasimov D.Yu., Sivkov A.A. Koaksial'nyy magnitoplazmennyy uskoritel' [Coaxial magneto plasma accelerator]. Patent RF, no. 2498542, 2013. (Publ. 10.11.2013, bull. no. 31).
  61. Sivkov A.A. Hybrid Electromagnetic System for Acceleration of Solids. Journal of Applied Mechanics and Technical Physics. 2001. V. 42, no. 1. P. 1-9.
  62. Hawke R.S., Dixon W.R., Kang S.W., McCallen R.C., Susoeff A.R., Assay J.R., Shahinpoor M. The Importance of high injection velocity to reduce plasma armature growth and drag in hypervelocity railguns. Proceedings of the 14th international conference on Plasma science. Arlington. VA, USA. 1987. P. 122-143.
  63. Hamilton G. Electromagnetic Launcher Facility Begins Operation in California. Aviation Week and Space Technology. 1986. V. 124, no. 4. P. 92-112.

Statistics

Views

Abstract: 3590

PDF (Russian): 3035

Dimensions

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2016 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies