Thin-film electrodes of dielectric elastomer-based actuators for an active vibration control system


Cite item

Full Text

Abstract

Precision research and technological equipment, as a rule, is not able to provide its specification characteristics without a high-quality vibration protection system. Active vibration control of an object is provided with the help of an additional source of movement, an actuator. The most promising high accuracy actuators are based on smart materials, such as materials with shape memory, piezoelectric and magnetostrictive materials, electro- and magnetic active fluids and elastomers. Dielectric elastomer is one of the types of electroactive polymers. Actuators based on a dielectric elastomer show high performance in terms of accuracy and speed and operate due to the controllable deformation of the elastomer under the action of a high voltage electric field. The paper provides a comparison of actuators based on sheet and thin film control electrodes. The influence of the quality of the polymer surface and the type of electrodes on the travel range of the actuator and maximum amplitude of vibrations the system can suppress on the basis of a dielectric elastomer is estimated. The formation of the electrode by magnetron sputtering in vacuum makes it possible to create a thin-film layer of copper that covers the elastomer, despite the developed surface. The effect of ion treatment of an elastomer before coating on the quality of the formed electrode is considered. After the ion treatment, the surface of the elastomer acquires a more uniform regular structure. A thin-film electrode layer is formed according to the topology of the elastomer to an accomplished standard.

About the authors

V. S. Shcherbakova

Bauman Moscow State Technical University

Author for correspondence.
Email: viktoria.sherbakova97@gmail.com

Student

Russian Federation

A. M. Bazinenkov

Bauman Moscow State Technical University

Email: ambazinenkov@bmstu.ru

Candidate of Science (Engineering), Associate Professor

Russian Federation

S. V. Sidorova

Bauman Moscow State Technical University

Email: sidorova@bmstu.ru

Candidate of Science (Engineering), Associate Professor

Russian Federation

A. D. Kouptsov

Bauman Moscow State Technical University

Email: alex-kouptsov@yandex.ru

Postgraduate Student

Russian Federation

D. A. Ivanova

Bauman Moscow State Technical University

Email: Ivanova_D_A@bk.ru

Postgraduate Student

Russian Federation

References

  1. Gao X., Yang J., Wu J., Xin X., Li Z., Yuan X., Shen X., Dong S. Piezoelectric actuators and motors: materials, designs, and applications. Advanced Materials Technologie. 2020. V. 5, Iss. 1. doi: 10.1002/admt.201900716
  2. Mohith S., Upadhya A.R., Navin K.P., Kulkarni S.M., Rao M. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Materials and Structure. 2021. V. 30, Iss. 1. doi: 10.1088/1361-665X/abc6b9
  3. Wang S., Rong W., Wang L., Hui X., Sun L., Mills J.K. A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing. 2019. V. 123. P. 591-605. doi: 10.1016/j.ymssp.2019.01.033
  4. Tzou H.S., Lee H.-J., Arnold S.M. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures. 2004. V. 11, Iss. 4-5. P. 367-393. doi: 10.1080/15376490490451552
  5. Bastola A.K., Hossain M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Composites Part B: Engineering. 2020. V. 200. doi: 10.1016/j.compositesb.2020.108348
  6. Li Z., Sheng M., Minqing W., Pengfei D., Li B., Chen H. Stacked dielectric elastomer actuator (SDEA): casting process, modeling and active vibration isolation. Smart Materials and Structures. 2018. V. 27, Iss. 7. doi: 10.1088/1361-665X/aabea5
  7. Pelssers E.G.M., Hendriks C.P., Hakkens F.J.G., Hilgers A., Van Den Ende D.A., Johnson M.T. Upravlenie zhestkost'yu dlya elektroaktivnykh ispolnitel'nykh ustroystv [Stiffness control for electroactive executive devices]. Patent RF, no. 2748051, 2021. (Publ. 19.05.2021, bull. no. 14)
  8. Skov A.L., Yu L. Optimization techniques for improving the performance of silicone-based dielectric elastomers. Advanced Engineering Materials. 2017. V. 20, Iss. 5. doi: 10.1002/adem.201700762
  9. Zhang Z.M., An Q., Li J.W., Zhang W.J. Piezoelectric friction – inertia actuator – a critical review and future perspective. The International Journal of Advanced Manufacturing Technology. 2012. V. 62. P. 669-685. doi: 10.1007/s00170-011-3827-z
  10. Yao K., Uchino K., Xu Y., Dong S., Lim L.C. Compact piezoelectric stacked actuators for high power application. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2000. V. 47, Iss. 4. P. 819-825. doi: 10.1109/58.852063
  11. Manohar Shankar B.S., Amith Mathias K., Kulkarni S.M. Influence of filler and processing parameters on the mechanical properties of dielectric elastomer composites. Materials Today: Proceedings. 2020. V. 27, Part 1. P. 221-226. doi: 10.1016/j.matpr.2019.10.058
  12. Panfilov Yu. Deposition of thin films in vacuum. Tekhnologii v Elektronnoy Promyshlennosti. 2007. No. 3 (15). P. 76-80. (In Russ.)
  13. Sikulskyi S., Mekonnen D.T., El Atrache A., Divo E., Kim D. Effects of ferroelectric fillers on composite dielectric elastomer actuator. Actuators. 2021. V. 10, Iss. 7. doi: 10.3390/act10070137
  14. Li J., Huang H., Morita T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sensors and Actuators A: Physical. 2019. V. 292. P. 39-51. doi: 10.1016/j.sna.2019.04.006
  15. Kuptsov A.D., Sidorova S.V. Thin film metal coatings for solar panels. Proceedings of the XXV International Scientific and Technical Conference «Vacuum Science and Technology» (September, 16-22, 2018, Sudak, Crimea). Moscow: Novella Publ., 2018. P. 187-192. (In Russ.)
  16. Sidorova S.V., Kouptsov A.D., Pronin M.A. Problems and solutions of automation of magnetron sputtering process in vacuum. Lecture Notes in Electrical Engineering. 2020. V. 641. P. 944-952. doi: 10.1007/978-3-030-39225-3_101

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies