Effective volume of short carbon fibers in a composite from chopped thin tapes


Cite item

Full Text

Abstract

This paper discusses a composite material from chopped thin narrow polymer tapes reinforced with carbon fibers and a polymer binder. The problem is posed to analytically determine the elastic and strength characteristics of the composite with a known minimum set of basic characteristics of the components. A methodology for sequential solving of the problem at the micro- and meso-levels is proposed. The key point in the methodology is the introduction of the “effective fiber volume factor” in the short filament and the way to calculate it using the “load-carrying factor” criterion. The following are presented: the results of calculating  Young’s modulus and tensile strength of material samples from parts of tapes with fixed lengths (6, 12, 18 and 24 mm); comparison with the experimental data and evaluation of accuracy and limits of the applicability of this methodology.

About the authors

V. A. Komarov

Samara National Research University

Author for correspondence.
Email: vkomarov@ssau.ru
ORCID iD: 0009-0007-9313-5754

Doctor of Science (Engineering), Professor of the Department of Aircraft Construction and Design

Russian Federation

R. F. Abdullayev

Samara National Research University

Email: rufat.abdullayev@hotmail.com
ORCID iD: 0009-0002-9756-7689

Postgraduate Student, Department of Aircraft Construction and Design

Russian Federation

References

  1. Obraztsov I.F., Vasil'ev V.V., Bunakov V.A. Optimal'noe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov [Optimal reinforcement of rotational shells made of composite materials]. Moscow: Mashinostroenie Publ., 1977. 144 p.
  2. Azarov A.V. The problem of designing aerospace mesh composite structures. Mechanics of Solids. 2018. V. 53, Iss. 4. P. 427-434. doi: 10.3103/S0025654418040088
  3. Pavlov A.A. Technological design of parts using layered fabric composite. Ontology of Designing. 2022. V. 12, no. 3 (45). P. 393-404. (In Russ.). doi: 10.18287/2223-9537-2022-12-3-393-404
  4. Schirmaier F.J., Weidenmann K.A., Karget L., Henning F. Characterization of the draping behavior of unidirectional non-crimp fabrics. Composites Part A: Applied Science and Manufacturing. 2016. V. 80. P. 28-38. doi: 10.1016/j.compositesa.2015.10.004
  5. Kurkin E., Spirina M., Barcenas O., Kurkina E. Calibration of the PA6 short-fiber reinforced material model for 10% to 30% carbon mass fraction mechanical characteristic prediction. Polymers. 2022. V. 14, Iss. 9. doi: 10.3390/polym14091781
  6. Wan Y., Takahashi J. Tensile and compressive properties of chopped carbon fiber tapes reinforced thermoplastics with different fiber lengths and molding pressures. Composites Part A: Applied Science and Manufacturing. 2016. V. 87. P. 271-281. doi: 10.1016/j.compositesa.2016.05.005
  7. Wan Y., Straumit I., Takahashi J., Lomov S.V. Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing. 2016. V. 91. P. 211-221. doi: 10.1016/j.compositesa.2016.10.013
  8. Komarov V.A. Design and material. Ontology of Designing. 2023. V. 13, no. 2 (48). P. 175-191. (In Russ.). doi: 10.18287/2223-9537-2023-13-2-175-191
  9. Novitskiy V.V. Prochnost' i proektirovanie konstruktsiy iz kompozitsionnykh materialov [Strength and design of structures made of composite materials]. Moscow: Zhukovsky Air Force Engineering Academy Publ., 1988. 299 p.
  10. Komarov A.A. Osnovy proektirovaniya silovykh konstruktsiy [Fundamentals of designing load-bearing units]. Kuybyshev: Kuybyshevskoe Knizhnoe Izdatel'stvo Publ., 1965. 88 p.
  11. Optimal design. Theory and applications to materials and structures / ed. by V.V. Vasiliev, Z.G. Gürdal. CRC Press, 1999. 330 p.
  12. Komarov V.A. Weight analysis of aircraft structures: theoretical foundations. Polyot. All-Russian Scientific and Technical Journal. 2000. No. 1. P. 31-39. (In Russ.)
  13. Perel'muter A.V. Synthesis problems in the theory of structures (brief historical review). Vestnik of Tomsk State University of Architecture and Building. 2016. No. 2 (55). P. 70-106. (In Russ.)
  14. Lomov S.V., Ivanov D.S., Verpoest I., Zako M., Kurashiki T., Nakai H., Molimard J., Vautrin A. Full-field strain measurements for validation of meso-FE analysis of textile composites. Composites Part A: Applied science and manufacturing. 2008. V. 39, Iss. 8. P. 1218-1231. doi: 10.1016/j.compositesa.2007.09.011
  15. Bitkin V.E., Zhidkova O.G., Komarov V.A. Сhoice of materials for producing dimensionally stable load-carrying structures. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2018. V. 17, no. 1. P. 100-117. (In Russ.). doi: 10.18287/2541-7533-2018-17-1-100-117
  16. Zhidkova O.G. Konstruktorsko-tekhnologicheskoe proektirovanie termorazmero-stabil'nykh kompozitnykh korpusov kosmicheskikh teleskopov. Dis. ... kand. tekhn. nauk [Design and engineering of thermo-dimensionally stable composite bodies of space telescopes. Dissertation for the Candidate Degree(Engineering)]. Samara, 2020. 175 p.
  17. Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela: ucheb. posobie [Mechanics of deformable solid bodies]. Moscow: Nauka Publ., 1988. 712 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies