Investigation of the influence of broadband mechanical disturbances on the quality of recording interference patterns of GTE-wheel oscillations using a digital speckle pattern interferometer


Cite item

Full Text

Abstract

The effect of broadband disturbances on the operation of a noise-immune digital speckle pattern interferometer with a continuous wave laser emitter and a diffuse-scattering element arranged in front of an oscillating turbine wheel has been studied. Visibility dependences of the recorded interference patterns were obtained under the action of different types of artificially created disturbances. It is shown that the most dangerous mechanical disturbances for the operation of a speckle pattern interferometer are periodic noise and pink noise, whereas white noise and natural vibrations of the floor in the room where the experimental setup was accommodated do not significantly influence the quality of the information recorded by the interferometer. This article analyzes the influence of the mechanical properties of the diffuse-scattering element arranged in the speckle pattern interferometer on the quality of the obtained interference patterns. A relationship between the growth of forced tangential oscillations of the diffuse-scattering element and a decrease in the contrast of interference fringes was noted. In this case, an increase in the thickness of the organic glass plate of the diffuse-scattering element up to 8 mm leads to the neutralization of the pink noise action on the speckle pattern interferometer operation. At the same time, the effect of periodic noises decreases the contrast of interference patterns recorded for the cases of using 5 mm and 8 mm thick organic glass plates.

About the authors

A. V. Ivchenko

Samara National Research University

Author for correspondence.
Email: fgrt@yandex.ru
ORCID iD: 0000-0003-2228-0835

Candidate of Science (Engineering), Associate  Professor of the Engine Production Department

Russian Federation

A. I. Safin

Samara National Research University

Email: safin.ai@ssau.ru
ORCID iD: 0000-0003-0936-4364

Candidate of Science (Engineering), Associate Professor of the Department
of Automatic Systems of Power Plants

Russian Federation

References

  1. Fedorchenko D.G., Kocherov E.P. Prochnostnaya dovodka i ustranenie osnovnykh defektov GTD [Strength development and elimination of the main defects of gas turbine engines]. Samara: Isakova T.S. (BIYuR) Publ., 2022. 431 p.
  2. Stetsenko A.A., Stetsenko O.A., Korolev P.V., Mamonov A.I., Rudko V.V., Solovyov O.B. Improvement of assessment of technical state of GTE and ensuring their safe operation. Vibratsiya Mashin: Izmerenie, Snizhenie, Zashchita. 2011. No. 4 (27). P. 25-37. (In Russ.)
  3. Mikhaylov A.L. Proektirovanie i vibrodiagnostika detaley GTD na osnove issledovaniya ob"emnogo napryazhenno-deformirovannogo sostoyaniya [Design and vibration-based diagnostics of gas turbine engine parts based on the study of three-dimensional stress-strain state]. Rybinsk: NPO Saturn: RGATA Publ., 2005. 213 p.
  4. Ivanov V.P. Kolebaniya rabochikh koles turbomashin [Vibrations of turbo-machine impellers]. Moscow: Mashinostroenie Publ., 1983. 224 p.
  5. Adams M.L. Rotating machinery vibration: from analysis to troubleshooting. CRC Press, 2010. 476 p.
  6. Boyce M.P. Gas turbine engineering handbook. Elsevier Inc., 2011. 1000 p.
  7. Basov P.A., Seleznev V.G. Nonsynchronous vibrations of turbomachinery bladed discs. Vestnik of the Samara State Aerospace University. 2014. No. 5 (47), part 2. P. 103-108. (In Russ.). doi: 10.18287/1998-6629-2014-0-5-2(47)-103-108
  8. Kushner F. Disk vibration – rotating blade and stationary vane interaction. Journal of Mechanical Design. 1980. V. 102, Iss. 3. P. 579-584. doi: 10.1115/1.3254788
  9. Ohashi H. Case study of pump failure due to rotor-stator interaction. International Journal of Rotating Machinery. 1994. V. 1. doi: 10.1155/s1023621x94000059
  10. Srinivasan A.V. Flutter and resonant vibration characteristics of engine blades. Journal of Engineering for Gas Turbines and Power. 1997. V. 119, Iss. 4. P. 742-775. doi: 10.1115/1.2817053
  11. Balakshin O.B., Kukharenko B.G., Khorikov A.A. Identification of turbine blade flutter. Journal of Machinery Manufacture and Reliability. 2008. V. 37, Iss. 1. P. 16-20. doi: 10.3103/S1052618808010056
  12. Sidorenko M.K. Vibrometriya gazoturbinnykh dvigateley [Vibration analysis of gas turbine engines]. Moscow: Mashinostroenie Publ., 1973. 224 p.
  13. Buzdugan Gh., Mihilescu E., Rades M. Vibration measurement. Dordrecht: Springer, 1986. 347 p. doi: 10.1007/978-94-017-3645-9
  14. Nerazrushayushchiy kontrol'. Spravochnik v 7 t. T. 7, kn. 1-2. Metod akusticheskoy emissii. Vibrodiagnostika / pod red. V.V. Klyueva [Nondestructive testing: Handbook. In 7 volumes. V. 7. Book 1-2. Acoustic emission method. Vibration-based diagnostics / ed. by V.V. Klyuev]. Moscow: Mashinostroenie Publ., 2006. 828 p.
  15. Elenevskiy S.D., Bekbulatov R.S., Sipukhin I.G. et al. Vibroprochnostnye ispytaniya okhlazhdaemykh lopatok turbiny. V sb.: «Nauchnye osnovy i metody povysheniya nadezhnosti i dolgovechnosti gazoturbinnykh dvigateley». Kiev: Naukova Dumka Publ., 1979. P. 149-155. (In Russ.)
  16. Petyt M. Fennit element modeling in structural dynamics. Industrial Vibration Modelling. 1987. P. 135-147. doi: 10.1007/978-94-009-4480-0_9
  17. Bertin L., Neri P., Santus C., Guglielmo A., Mariotti G. Analytical investigation of the SAFE diagram for bladed wheels, numerical and experimental validation. Journal of Sound and Vibration. 2014. V. 333, Iss. 19. P. 4771-4788. doi: 10.1016/j.jsv.2014.04.061
  18. Gray C. Optical methods of engineering analysis. Cambridge: Cambridge University Press, 1998. 520 p.
  19. Lyu L.F., Zhu W.D. Operational modal analysis of rotating structures under ambient excitation using tracking continuously scanning laser doppler vibrometry. Rotating Machinery, Optical Methods & Scanning LDV Methods. 2022. V. 6. P. 51-58. doi: 10.1007/978-3-030-76335-0_5
  20. Francon M. La granularite laser (spekle) et ses applications en optique. Paris: Masson, 1978. 132 p.
  21. Jones R., Wykes C. Holographic and speckle interferometry. A discussion of the theory, practice and application of the techniques. Cambridge: Cambridge University Press, 1983. 330 p.
  22. Doval A.F., Trillo C., Cemadas D., Dorrio B.V., Lopez C., Femandez J.L., Perez-Amor M. Measuring amplitude and phase of vibration with double-exposed stroboscopic TV Holography. Interferometry in Speckle Light. 2000. P. 281-288. doi: 10.1007/978-3-642-57323-1_35
  23. Zhuravlev O.A., Shaposhnikov Yu.N., Shcheglov Yu.D., Komarov S.Yu. Primenenie metodov golograficheskoy i spekl-interferometrii dlya issledovaniya vibratsii i shuma mekhanicheskikh konstruktsiy [Application of holographic and speckle interferometry methods for studying vibration and noise of mechanical structures]. Samara: Samara State Aerospace University Publ., 2005. 143 p.
  24. Komarov S.Yu. Razrabotka pomekhoustoychivogo spekl-interferometra dlya opredeleniya rezonansnykh chastot i form kolebaniy vysokonagruzhennykh elementov konstruktsiy, sistem i agregatov energeticheskikh ustanovok. Dis. … kand. tekhn. nauk [Development of a noise-immune speckle interferometer for determining resonant frequencies and vibration modes of high- load structural elements, systems and units of power plants. Dissertation for the Candidate Degree (Engineering). Samara]. Samara, 2004. 233 p.
  25. Watson R., Downey O. The little red book of acoustics: A practical guide. London: Unknown, 2013. 306 p.
  26. Kharkevich A.A. Spektry i analiz [Spectra and analysis]. Moscow: Knizhnyy Dom «LIBROKOM» Publ., 2009. 240 p.
  27. Ostrovskiy Yu.I., Butusov M.M., Ostrovskaya G.V. Golograficheskaya interferometriya [Holographic interferometry]. Moscow: Nauka Publ., 1977. 339 p.
  28. Ivchenko A.V., Zhuzhukin A.I. The system development for digital recording of speckle-interferograms of an oscillating object without vibration isolation. Proceedings of the International Conference on Dynamics and Vibroacoustics of Machines, DVM 2020 (September, 16-18, 2020, Samara, Russia). doi: 10.1109/dvm49764.2020.9243896
  29. Ivchenko A.V., Safin A.I. The technique improvement for GTE-wheel oscillation recording by the noise-proof digital speckle pattern interferometer. Proceedings of the International Conference on Dynamics and Vibroacoustics of Machines, DVM 2022 (September, 21-23, 2022, Samara, Russia). doi: 10.1109/dvm55487.2022.9930910
  30. Zhuzhukin A.I. Ustroystvo dlya issledovaniya form kolebaniy [Device for studying vibration modes]. Patent RF, no. 71429, 2008. (Publ. 10.03.2008, bull. no. 7)
  31. Moeller K.D. Optics. New York: Springer-Verlag, 2007. 455 p. doi: 10.1007/978-0-387-69492-4
  32. Timoshenko S., Woinowsky-Kriger S. Theory of plates and shells. McGraw-Hill Book Company, 1959. 591 p.
  33. GOST 8.207-76. State system for ensuring the uniformity of measurements. Direct measurements with multiple observations. Methods of processing the results of observations. Basic principles. Moscow: Standartinform Publ., 2006. 8 p. (In Russ.)
  34. Taktarov N.G. Spravochnik po vysshey matematike dlya studentov vuzov [Handbook on higher mathematics for university students]. Moscow: Knizhnyy Dom «LIBROKOM» Publ., 2019. 880 p.
  35. Palazzolo A. Vibration theory and applications with finite elements and active vibration control. Hoboken: John Wiley& Sons, 2016. 976 p.
  36. Kragel'skiy I.V. Trenie i iznos [Friction and wear]. Moscow: Mashinostroenie Publ., 1968. 480 p.
  37. Chicharro J.M., Bayon A., Salazar F. Measurement of damping in magnetic materials by optical heterodyne interferometry. Journal of Magnetism and Magnetic Materials. 2004. V. 268, Iss. 3. Р. 348-356. doi: 10.1016/s0304-8853(03)00546-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies