Effect of HF and ER additions on the mechanical properties and microstructure of AL-MG-SC-ZR system alloys
- Authors: Aryshenskii E.V.1, Aryshenskii V.Y.1, Ragazin A.A.1, Rasposienko D.Y.2, Grechnikov F.V.1, Makarov V.V.2,1, Konovalov S.V.1,3
-
Affiliations:
- Samara National Research University
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- Siberian State Industrial University
- Issue: Vol 23, No 1 (2024)
- Pages: 137-146
- Section: MECHANICAL ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/27334
- DOI: https://doi.org/10.18287/2541-7533-2024-23-1-137-146
- ID: 27334
Cite item
Full Text
Abstract
The study addresses the effect of 1580 and 1590 alloys cold rolled strip annealing practices on the alloys’ grain structure and mechanical properties. The 1590 alloy differs from the 1580 alloy by hafnium and erbium additions. Samples of such alloys were produced by casting into a steel mold. After that they were homogenized during 4 h at 440°С. Then the samples were hot rolled at 440°С, with further cold rolling to 2 mm, with the cumulative percentage reduction equal to 66%. The cold rolled strip was annealed at the temperature ranging from 330 to 440°С with 1 h soaking. The sizes and morphology of Al3Sc strengthening nanoparticles were examined in homogenized condition using transmission microscopy. The mechanical properties and grain structure were defined in cold rolled and annealed conditions. During homogenizing annealing in the 1590 alloy finer strengthening nanoparticles are formed compared to the 1580 alloy. Such features of the microstructure can be explained by the presence of erbium, promoting formation of additional Al3Sc-type nanoparticles nuclei, and hafnium, preventing their further growth. Non-recrystallized structure was identified in both alloys after cold rolling and final annealing. The 1590 alloy has better mechanical properties, regardless of the annealing temperature, which is explained by a larger portion and smaller size of strengthening nanoparticles.
Keywords
About the authors
E. V. Aryshenskii
Samara National Research University
Author for correspondence.
Email: arishenskiy_ev@sibsiu.ru
ORCID iD: 0000-0003-3875-7749
Doctor of Science (Engineering), PhD, Leading Researcher of ONIL-4
Russian FederationV. Yu. Aryshenskii
Samara National Research University
Email: arysh54@mail.ru
ORCID iD: 0000-0001-6869-4764
Doctor of Science (Engineering), Chief Researcher of ONIL-4
Russian FederationA. A. Ragazin
Samara National Research University
Email: aleksander.ragazin@samara-metallurg.ru
ORCID iD: 0000-0002-6762-7436
Postgraduate Student of the Department of Metal Technology and Aviation Materials; Engineer of ONIL-4
Russian FederationD. Yu. Rasposienko
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: rasposienko@imp.uran.ru
ORCID iD: 0000-0002-7670-9054
Candidate of Science (Engineering), Leading Researcher, Head of the Laboratory of Non-ferrous Alloys
Russian FederationF. V. Grechnikov
Samara National Research University
Email: gretch@ssau.ru
ORCID iD: 0000-0002-3767-4004
Academician of the Russian Academy of Sciences, Doctor of Science (Engineering), Head of the Department of Metal Forming
Russian FederationV. V. Makarov
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences;Samara National Research University
Email: makarov@imp.uran.ru
ORCID iD: 0000-0002-7306-3657
Research Associate;
Junior Researcher of ONIL-4
S. V. Konovalov
Samara National Research University;Siberian State Industrial University
Email: konovalov@sibsiu.ru
ORCID iD: 0000-0003-4809-8660
Doctor of Science (Engineering), Chief Researcher of ONIL-4;
Vice-Rector for Scientific and Innovative Activities
References
- Du H., Zhang S., Zhang B., Tao X., Yao Z., Belov N., van der Zwaag S., Liu Z. Ca-modified Al-Mg-Sc alloy with high strength at elevated temperatures due to a hierarchical microstructure. Journal of Materials Science. 2021. V. 56. P. 16145-16157. doi: 10.1007/s10853-021-06310-5
- Savchenkov S., Kosov Ya., Bazhin V., Krylov K., Kawalla R. Microstructural master alloys features of aluminum-erbium system. Crystals. 2021. V. 11, Iss. 11. doi: 10.3390/cryst11111353
- Zorin I.A., Drits A.M., Aryshenskii E.V., Konovalov S.V., Grechnikov F.V., Komarov V.S. Effect of transition metals on as-cast aluminum alloys microstructure composition. Fundamental’nye Problemy Sovremennogo Materialovedenia. 2022. V. 19, no. 4. P. 520-531. (In Russ.). doi: 10.25712/ASTU.1811-1416.2022.04.011
- Blankenship C.P., Starke E.A., Hornbogen E. Microstructure and properties of aluminum alloys. Microstructure and Properties of Materials. P. 1-49. doi: 10.1142/9789814261326_0001
- Aryshensky E.V., Aryshensky V.Yu., Drits А.М., Grechnikov F.V., Ragazin А.А. Thermal treatment effect on the mechanical properties of 1570, 1580 and 1590 aluminum alloys. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2022. V. 21, no. 4. P. 76-87. (In Russ.). doi: 10.18287/2541-7533-2022-21-4-76-87
- Zakharov V.V. Effect of scandium on the structure and properties of aluminum alloys. Metal Science and Heat Treatment. 2003. V. 45, Iss. 7-8. P. 246-253. doi: 10.1023/A:1027368032062
- Zakharov V.V. Combined alloying of aluminum alloys with scandium and zirconium. Metal Science and Heat Treatment. 2014. V. 56, Iss. 5-6. P. 281-286. doi: 10.1007/s11041-014-9746-5
- Sosedkov S.M., Drits A.M., Aryshensky V.Yu., Yashin V.V. Strain hardening of 1565ch, АМg6, 01570 and 1580 alloy plates upon the cold rolling. Tekhnologiya Legkikh Splavov. 2020. No. 1. P. 39-43. (In Russ.)
- Hallem H., Forbord B., Marthinsen K. Investigation of Al-Fe-Si alloys with additions of Hf, Sc and Zr. Materials Forum. 2004. V. 28. P. 825-831.
- Hallem H., Lefebvre W., Forbord B., Danoix F., Marthinsen K. The formation of Al3 (ScxZryHf1−x−y)-dispersoids in aluminium alloys. Materials Science and Engineering: A. 2006. V. 421, Iss. 1-2. P. 154-160. doi: 10.1016/j.msea.2005.11.063
- Booth-Morrison C., Dunand D.C., Seidman D.N. Coarsening resistance at 400˚C of precipitation-strengthened Al-Zr-Sc-Er alloys. Acta Materialia. 2011. V. 59, Iss. 18. P. 7029-7042. doi: 10.1016/j.actamat.2011.07.057
- Karnesky R.A., Dunand D.C., Seidman D.N. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Materialia. 2009. V. 57, Iss. 14. P. 4022-4031. doi: 10.1016/j.actamat.2009.04.034
- Liu X., Wang Q., Zhao C., Li H., Wang M., Chen D., Wang H. Formation of ordered precipitates in Al-Sc-Er-(Si/Zr) alloy from first-principles study. Journal of Rare Earths. 2021. V. 39, Iss. 5. P. 609-620. doi: 10.1016/j.jre.2020.08.005
- Röyset J., Ryum N. Scandium in aluminium alloys. International Materials Reviews. 2005. V. 50, Iss. 1. P. 19-44. doi: 10.1179/174328005X14311
- Kendig K.L., Miracle D.B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Materialia. 2002. V. 50, Iss. 16. P. 4165-4175. doi: 10.1016/S1359-6454(02)00258-6
- Chen H., Chen Z., Ji G., Zhong S., Wang H., Borbély A., Ke Y., Bréchet Y. Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy. International Journal of Plasticity. 2021. V. 139. doi: 10.1016/j.ijplas.2021.102971