Verification of aero-engine numerical rotor models based on virtual static structural and modal tests


Cite item

Full Text

Abstract

A method for developing a numerical rotor model and its further verification based on the results of virtual static structural and modal tests was proposed. Approbation of the method was performed on a model of a low pressure rotor of a high-bypass turbofan engine constructed in a software system for rotor dynamics simulation DYNAMICS R4. Refined on the basis of the results of virtual static structural tests, the model of the rotor main force action line showed good agreement in frequencies and mode shapes with the results of a finite element model, obtained during a virtual modal test.

About the authors

K. V. Shaposhnikov

Alfa-Tranzit Co., Ltd.

Author for correspondence.
Email: kvshaposhnikov@alfatran.com
ORCID iD: 0000-0001-8464-0969

Research-Engineer, PhD, Engineering and Consulting Center on Rotordynamics

Russian Federation

S. A. Degtyarev

Alfa-Tranzit Co., Ltd.

Email: degs@alfatran.com

Development Team Leader, Engineering and Consulting Center on Rotordynamics

Russian Federation

M. K. Leontiev

Moscow Aviation Institute

Email: lemk@alfatran.com

Doctor of Science (Engineering), Professor of Department 203 of Construction and Design of Engines

Russian Federation

S. V. Anisimov

Volga-Dnepr Airlines, Moscow branch, LLC

Email: sanisimov2013@yandex.ru

Deputy Head of the Power Plant Department

Russian Federation

References

  1. Grieves M.W. Product lifecycle management: the new paradigm for enterprises. International Journal of Product Development. 2005. V. 2, Iss. 1-2. P. 71-84. doi: 10.1504/IJPD.2005.006669
  2. GOST R 57700.37-2021. Computer models and simulation. Digital twins of products. General provisions. Moscow: Rossiyskiy Institut Standartizatsii Publ., 2021. 11 p. (In Russ.)
  3. Vibratsii v tekhnike. Spravochnik: v 6 t. T. 3. Kolebaniya mashin, konstruktsiy i ikh elementov / pod red. F.M. Dimentberga, K.S. Kolesnikova [Vibrations in engineering. Reference book in 6 volumes. V. 3 Oscillations of machines, structures and their elements]. Moscow: Mashinostroenie Publ., 1980. 544 p.
  4. Shaposhnikov K.V., Leontyev M.K. Verification of aero engine numerical rotor models for solving rotordynamics problems. Abstracts of 21st International Conference «Aviation and Cosmonautics» (AviaSpace2022) (November, 21-25, 2022, Moscow, Russia). Moscow: Pero Publ., 2022. P. 178-179. (In Russ.)
  5. Vance J.M., Murphy B.T., Tripp H.A. Critical speeds of turbomachinery: computer predictions vs. experimental measurements – Part I: The rotor mass-elastic model. Journal of Vibration and Acoustics. 1987. V. 109, Iss. 1. P. 1-7. doi: 10.1115/1.3269389
  6. Vance J.M., Murphy B.T., Tripp H.A. Critical speeds of turbomachinery: computer predictions vs. experimental measurements – Part II: Effect of tilt-pad bearings and foundation dynamics. Journal of Vibration and Acoustics. 1987. V. 109, Iss. 1. P. 8-14. doi: 10.1115/1.3269401
  7. Vance J.M. Rotordynamics of turbomachinery. John Wiley & Sons, 1991. 400 p.
  8. Pirogova N.S., Taranenko P.A. Calculated-experimental analysis of the natural and critical frequencies and mode shapes high-speed of rotors micro gas turbine unit. Bulletin of the South Ural State University. Series: Mechanical Engineering Industry. 2015. V. 15, no. 3. P. 37-47. (In Russ.)
  9. Shaposhnikov K., Gao C. Problems of rotordynamic modeling for built-up gas turbine rotors with central tie rod shaft. Mechanisms and Machine Science. 2019. V. 62. P. 250-264. doi: 10.1007/978-3-319-99270-9_18
  10. Kim Y.C., Lee A.-S., Lee D.H., Ha J.W., Han S.S. Design of the scale reduced rotors to simulate the full-size large gas turbines and their rotordynamic characteristics. Proceedings of International Gas Turbine Congress, IGTC-2019 (November, 17-22, 2019, Tokyo, Japan)
  11. Kim Y.C., Han S.S., Kim Y.C. Verification of rotordynamic design using 1/5 scaled model rotor of 270 MW-class gas turbine center-tied rotor. International Journal of Precision Engineering and Manufacturing. 2021. V. 22. P. 271-285. doi: 10.1007/s12541-020-00405-w
  12. Liu J., Fei Q., Wu S., Tang Z., Liao S., Zhang D. An efficient dynamic modeling technique for a central tie rod rotor. International Journal of Aerospace Engineering. 2021. V. 2021. doi: 10.1155/2021/6618828
  13. GOST R 57700.10-2018. Numerical modeling of physical processes. Determination of stress-strain state. Verification and validation of numerical models of complex structural elements in the elastic region. Moscow: Standartinform Publ., 2018. 12 p. (In Russ.)
  14. Dimentberg F.M. Izgibnye kolebaniya vrashchayushchikhsya valov [Flexural vibrations of rotary shafts]. Moscow: Akademiya Nauk SSSR Publ., 1959. 248 p.
  15. Khronin D.V. Teoriya i raschet kolebaniy v dvigatelyakh letatel'nykh apparatov [Theory and computation of vibrations in aircraft engines]. Moscow: Mashinostroenie Publ., 1970. 412 p.
  16. Dinamika aviatsionnykh gazoturbinnykh dvigateley / pod red. I.A. Birgera, B.F. Shorra [Dynamics of aviation gas turbine engines]. Moscow: Mashinostroenie Publ., 1981. 232 p.
  17. Kostyuk A.G. Dinamika i prochnost' turbomashin [Dynamics and strength of turbo-machines]. Moscow: Izdatel'skiy Dom MEI Publ., 2007. 476 p.
  18. Nikhamkin M.A. Vibratsionnye protsessy v gazoturbinnykh dvigatelyakh [Vibratory processes in gas turbine engines]. Perm: Perm National Research Polytechnic University Publ., 2011. 117 p.
  19. Childs D. Turbomachinery rotordynamics: phenomena, modeling and analysis. New York: John Wiley & Sons, 1993. 476 p.
  20. Lalanne M., Ferraris G. Rotordynamics prediction in engineering. Hoboken: Wiley, 1998. 272 p.
  21. Adams M.L. Rotating machinery vibration: from analysis to troubleshooting. CRC Press, 2010. 476 p.
  22. Vance J., Zeidan F., Murphy B. Machinery vibration and rotordynamics. New York: John Wiley & Sons, 2010. 416 p.
  23. Friswell M.I., Penny J.E., Garvey S.D., Lees A.W. Dynamics of rotating machines. Cambridge: Cambridge University Press, 2010. 526 p.
  24. API RP 684. Paragraphs rotodynamic tutorial: Lateral critical speeds, unbalance response, stability, train torsionals and rotor balancing. Washington: American Petroleum Institute, 2005. 320 р.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies