Ballistic analysis of a mission to Jupiter’s moon Callisto with landing on the surface


Cite item

Full Text

Abstract

The article presents the results of a study on the basis of which a set of mathematical models was developed for ballistic analysis of a mission to send a small spacecraft to the satellite of Jupiter, Callisto and its landing on the surface of the satellite. In this mission, it is proposed to use a gravity assist maneuver around the Earth and an aerodynamic maneuver near Jupiter to reduce the cost of the working fluid of the spacecraft. The minimum required thrust of the engines and the duration of the soft landing maneuver of a spacecraft with a given mass on the satellite are estimated. The optimal launch date was found for the possibility of launching a spacecraft using a medium-lift Soyuz-2 launch vehicle. The simulation of the movement was carried out numerically, in the Mathcad mathematical package, all the dependence diagrams necessary for the analysis of the movement were constructed.

About the authors

V. V. Kovalev

Samara National Research University

Author for correspondence.
Email: vadkovalev97@mail.ru

Postgraduate Student of the Department of Flight Dynamics and Control Systems

Russian Federation

A. D. Marchenko

Samara National Research University

Email: anzhela_marchenko_97@mail.ru

Postgraduate Student of the Department of Flight Dynamics and Control Systems

Russian Federation

T. V. Starostina

Samara National Research University

Email: samara-tanya2000@mail.ru

Student of the Institute of Aeronautical and Space Rocket Engineering

Russian Federation

A. R. Sharipova

Samara National Research University

Email: Sharipovaaliya2016@yandex.ru

Postgraduate Student of the Department of Flight Dynamics and Control Systems

Russian Federation

References

  1. Voyager. Mission overview. Available at: https://voyager.jpl.nasa.gov/mission/
  2. The Pioneer missions. Available at: https://ntrs.nasa.gov/citations/20020060778
  3. Galileo. Available at: https://solarsystem.nasa.gov/missions/galileo/in-depth/
  4. Juno Overview. Available at:
  5. https://web.archive.org/web/20180907181255/https://www.nasa.gov/mission_pages/juno/overview/index.html
  6. Levantovskiy V.I. Mekhanika kosmicheskogo poleta v elementarnom izlozhenii [Mechanics of space flight in an elementary presentation]. Moscow: Nauka Publ., 1980. 512 p.
  7. Luk'yanov S.V., Kovalev V.V., Ivanov D.P., Galinsoga Kh., Bay V., Tsay Sh. Vybor nauchnoy apparatury malogo kosmicheskogo apparata dlya issledovaniya sputnika Yupitera – Kallisto. Sbornik trudov XXIV Vserossiyskogo seminara po upravleniyu dvizheniem i navigatsii letatel'nykh apparatov «Upravlenie Dvizheniem i Navigatsiya Letatel'nykh Apparatov» (June, 17-18, 2021, Samara). Samara: Samara University Publ., 2022. P. 84-88. (In Russ.)
  8. Callisto. Available at: https://solarsystem.nasa.gov/moons/jupiter-moons/callisto/in-depth/
  9. Troutman P.A., Bethke K., Stillwagen F., Caldwell Darrell L.Jr., Manvi R., Strickland C., Krizan Sh.A. Revolutionary concepts for human outer planet exploration (HOPE). AIP Conference Proceedings. 2003. V. 654. P. 821-828. doi: 10.1063/1.1541373
  10. Planetary satellite mean orbital parameters. Available at: https://ssd.jpl.nasa.gov/sats/elem/
  11. Horizons system. Available at: https://ssd.jpl.nasa.gov/horizons/app.html#/
  12. Shalygin A.S., Sannikov V.A., Petrova I.L. Navigatsiya i navedenie kosmicheskikh apparatov: ucheb. posobie [Navigation and guidance of spacecraft] Saint Petersburg: Baltic State Technical University Publ., 2008. 142 p.
  13. Ivanov N.M., Martynov A.I. Dvizhenie kosmicheskikh letatel'nykh apparatov v atmosferakh planet [Motion of spacecraft in the atmospheres of planets] Moscow: Nauka Publ., 1985. 384 p.
  14. Ivanov N.M., Martynov A.I., Sokolov N.L. Optimal spacecraft control in Jupiter’s atmosphere. Kosmicheskie Issledovaniya. 1980. V. 17, no. 3. P. 348-365. (In Russ.)
  15. Sieff A., Kirk D.B., Knight T.C.D., Young R.E., Mihalov J.D., Young L.A., Milos F.S., Schubert G., Blanchard R.C., Atkinson D. Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. Journal of Geophysical Research: Planets. 1998. V. 103, Iss. l0. P. 22857-22889. doi: 10.1029/98JE01766
  16. Orlov D.A. Metodika mnogokriterial'noy optimizatsii upravleniya dvizheniem kosmicheskogo apparata pri spuske v atmosfere planety. Dis. ... kand. tekhn. nauk [A technique for multi-criteria optimization of spacecraft motion control during descent in a planet’s atmosphere. Dissertation for the Candidate Degree (Engineering)]. Moscow, 2021. 128 p.
  17. Raketa-nositel' «Coyuz-2.1v» [Soyuz-2.1v launch vehicle]. Available at: https://www.roscosmos.ru/20067/
  18. Raketa-nositel’ «Rokot» [Rokot launch vehicle]. Available at: http://www.khrunichev.ru/main.php?id=43
  19. Raketa-nositel’ «Soyuz-2» [Soyuz-2 launch vehicle]. Available at: https://www.roscosmos.ru/468/
  20. Semeystvo raket-nositeley «Angara» [Family of Angara launch vehicles]. Available at: http://www.khrunichev.ru/main.php?id=44
  21. Universal'nyy razgonnyy blok «Fregat» [Fregat universal upper stage]. Available at: https://www.laspace.ru/company/products/launch-vehicles/fregat/
  22. «Briz-KM» [Briz-KM]. Available at: http://www.khrunichev.ru/main.php?id=50

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies