Method of scanning thin surfaces in repairing gas turbine blades


Cite item

Full Text

Abstract

Improving the efficiency of weld overlay repair of gas turbine blades by developing and implementing a method of scanning complex curved surfaces of gas turbine blades directly on the machine is the aim of this work. The paper proposes an approach to scanning a blade with a computer vision system mounted near the nozzle on the same machine that is used for direct metal deposition. The computer vision system consists of a triangulation laser sensor and a camera. The proposed algorithm is adaptive to the mechanical condition of the equipment used for scanning and metal deposition. The scans obtained from the machine vision system have precision better than 0.05 mm in 67.56% of cases, and precision better than 0.1 mm in 95.75% of cases. That accuracy, with a laser spot of 0.5 to 1.0 mm, is sufficient for further use of the scans in repairing gas turbine blades. The proposed approach makes it possible to speed up the preparation of technological programs for direct metal deposition by 10 times compared to the manual scanning method.

About the authors

D. I. Kotlyar

Soloviev Rybinsk State Aviation Technical University

Author for correspondence.
Email: dm.kotlyar@yandex.ru

Postgraduate Student of the Department of Electrical Engineering and Industrial Electronics

Russian Federation

A. N. Lomanov

Soloviev Rybinsk State Aviation Technical University

Email: lepss@yandex.ru

Candidate of Science (Engineering), Associate Professor, Director of the Institute of Information Technologies and Control Systems

Russian Federation

References

  1. Bezyazychnyy V.F., Smirnov A.V. Analysis and directions of technological and organization problem updating in gas turbine aircraft engine repair. Science Intensive Technologies in Mechanical Engineering. 2020. No. 8 (110). P. 42-48. (In Russ.). doi: 10.30987/2223-4608-2020-8-42-48
  2. Leontev V.A., Zilichikhis S.D., Kondratyuk E.V., Zamkovoy V.E. Restoration of gas turbine engine performance using new technologies and materials. Vestnik Dvigatelestroeniya. 2006. No. 4. P. 99-103. (In Russ.)
  3. Bessudnov I.A. Sovershenstvovanie tekhnologiy remonta gazoturbinnykh aviatsionnykh dvigateley s ispol'zovaniem resursosberegayushchikh tekhnologiy. Dis. … kand. tekhn. nauk [Improvement of repair technologies for gas turbine aircraft engines using resource-saving technologies. Ph.D thesis in Engineering Science]. Rybinsk, 2014. 208 p.
  4. Galantucci L.M., Piperi E., Lavecchia F., Zhavo A. Semi-automatic low cost 3D laser scanning systems for reverse engineering. Procedia CIRP. 2015. V. 28. P. 94-99. doi: 10.1016/j.procir.2015.04.016
  5. Ahmadi S.A., Mohammadzadeh A., Hosseininaveh A. Introduction of a domestic scanner for 3D object modeling and its evaluation. 1st National Conference on Geospatial Information Technology (January, 19-20 января, 2016, Tehran, Iran).
  6. Salehi V., Wang S. Using point cloud technology for process simulation in the context of digital factory based on a systems engineering integrated approach. Proceedings of the 21st International Conference on Engineering Design, ICED17 (August, 21-25, 2017, Vancouver, Canada). V. 3. P. 11-20.
  7. Mutilba U., Gomez-Acedo E., Kortaberria G., Olarra A., Yagüe-Fabra J.A. Traceability of on-machine tool measurement: a review. Sensors. 2017. V. 17, Iss. 17. doi: 10.3390/s17071605
  8. Horst J., Hedberg T., Feeney A.B. On-machine measurement use cases and information for machining operations. Report no. 400-1. Gaithersburg, MD: National Institute of Standards and Technology, 2019. 61 p. doi: 10.6028/NIST.AMS.400-1.
  9. Logee S. Quality in manufacturing. On-machine measurement. Available at: http://www.toolingandproduction.com/qim/1004on-machine.aspx
  10. Dorozhkin I.N., Dorozhkina O.K., Shinkevich I.A. Digital production introduction at the expense of industrial and operational management automation at the industrial enterprise. Vestnik MSTU «Stankin». 2018. No. 2 (45). P. 112-116. (In Russ.)
  11. Srinivasan H., Harrysson O., Wysk R. Automatic part localization in a CNC machine coordinate system by means of 3D scans. The International Journal of Advanced Manufacturing Technology. 2015. V. 81. P. 1127-1138. doi: 10.1007/s00170-015-7178-z
  12. Zelenskii A.A., Frants V.A., Semenishchev E.A. Trajectory-planning algorithm based on engineering vision in manipulator management. Russian Engineering Research. 2020. V. 40, Iss. 1. P. 1-5. doi: 10.3103/S1068798X20010268
  13. Xiong X.H., Chen J.L., Quan D.M. Directly manufacturing mouse mold by plasma deposition manufacturing. Advanced Materials Research. 2014. V. 941-944. P. 2190-2193. doi: 10.4028/ href='www.scientific.net/AMR.941-944.2190' target='_blank'>www.scientific.net/AMR.941-944.2190
  14. Skotheim O., Lind M., Ystgaard P., Fjerdingen S.A. A flexible 3D object localization system for industrial part handling. IEEE/RSJ International Conference on Intelligent Robots and Systems (October, 07-12, 2012, Vilamoura-Algarve, Portugal). doi: 10.1109/IROS.2012.6385508
  15. Okarma K., Grudzinski M. The 3D scanning system for the machine vision based positioning of workpieces on the CNC machine tools. Proceedings of the 17th International Conference on Methods & Models in Automation & Robotics (MMAR) (August, 27-30, 2012, Miedzyzdroje, Poland). doi: 10.1109/MMAR.2012.6347906
  16. Xu X., Zhu D., Zhang H., Yan S., Ding H. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. The International Journal of Advanced Manufacturing Technology. 2017. V. 90. P. 635-647. doi: 10.1007/s00170-016-9331-8
  17. Burghardt A., Szybicki D., Gierlak P., Kurc K., Muszyñska M. Robotic grinding process of turboprop engine compressor blades with active selection of contact force. Technical Gazette. 2022. V. 29, no. 1. С. 15-22. doi: 10.17559/TV-20190710141137
  18. Kurc K., Burghardt A., Gierlak P., Muszyñska M., Szybicki D., Ornat A., Uliasz M. Application of a 3D scanner in robotic measurement of aviation components. Electronics. 2022. V. 11, Iss. 19. doi: 10.3390/electronics11193216
  19. Diao S., Chen X., Luo J. Development and experimental evaluation of a 3D vision system for grinding robot. Sensors. 2018. V. 18, Iss. 9. doi: 10.3390/s18093078
  20. Xu J., Xu L., Li Y., Sun Y. Shape-adaptive CNC milling for complex contours on deformed thin-walled revolution surface parts. Journal of Manufacturing Processes. 2020. V. 59. P. 760-771. doi: 10.1016/j.jmapro.2020.10.001
  21. Afonin V.L., Smolentsev A.N., Yakovlev M.G. Intelligent robotic complex for finishing complex surfaces. Proceedings of the International Scientific and Technological Conference «Extreme Robotics and Conversion Tendencies» (June, 7-8, 2018, Saint-Petersburg, Russia). SPb.: Politekhnika Servis Publ., 2018. P. 161-170. (In Russ.)
  22. Shadrin M.V. Lazernyy triangulyatsionnyy 3D metod i ustroystvo dlya prototipirovaniya i izgotovleniya slozhnykh izdeliy. Dis. … kand. tekhn. nauk [Laser triangulation 3D method and device for prototyping and manufacturing complex products. Ph.D thesis in Engineering Science]. Ryazan, 2020, 194 p.
  23. Franca J.G.D.M., Gazziro M.A., Ide A.N., Saito J.H. A 3D scanning system based on laser triangulation and variable field of view. Proceedings of the IEEE International Conference on Image Processing 2005 (September, 14, 2005, Genova). doi: 10.1109/ICIP.2005.1529778
  24. Petrov M.A., Eldib I.S.A. Development of 3D-models of sheet and bulk metal parts, obtained by cold deformation, using optical scanning. Izvestiya Tul'skogo Gosudarstvennogo universiteta. Tekhnicheskie nauki. 2019. No. 9. P. 471-479. (In Russ.)
  25. Alontseva D.L., Krasavin A.L., Shadrin G.K., Kadyroldina A.T., Kusaiyn-Murat Т. Development of a control system for a manipulating industrial robot for 3D surface scanning. Bulletin of D. Serikbayev East Kazakhstan Technical University. 2019. No. 1. P. 81-87. (In Russ.)
  26. Busurin V.I., Zhe L., Kudryavtsev P.S. Control of contactless profilometer for scanning surfaces of complex profile. Mekhatronika, Avtomatizatsiya, Upravlenie. 2022. V. 23, no. 10. P. 529-535. (In Russ.). doi: 10.17587/mau.23.529-535
  27. Losev E.D., Svinarev A.A., Mishurov S.V., Belkina A.V., Stepina A.S. Automation of the restoration of the impeller of the brotherly hydropower plant. Mechanical Engineers to XXI Century. 2018. No. 17. P. 169-174. (In Russ.)
  28. Meltser-Jokisch T., Thomaidis D., Vil'kenkhener R. Sposob avtomatizirovannogo remonta detali mashin [Method of automated repair of machine parts]. Patent RF, no. 2499657, 2003. (Publ. 27.11.2013, bull. no. 33)
  29. Wang X., Deng D., Hu Y., Ning F., Wang H., Cong W., Zhang H. Overhang structure and accuracy in laser engineered net shaping of Fe-Cr steel. Optics & Laser Technology. 2018. V. 106. P. 357-365. doi: 10.1016/j.optlastec.2018.04.015
  30. Gorbachev V.A., Krivorotov I.A., Markelov A.O., Kotlyarova E.V. Semantic segmentation of satellite images of airports using convolutional neural networks. Computer Optics. 2020. V. 44, no. 4. P. 636-645. (In Russ.). doi: 10.18287/2412-6179-CO-636

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies