Exploratory analysis of hybrid polymer metal-composite structures

Cover Page

Cite item

Full Text

Abstract

The results of research in the field of development of technology for the manufacture of hybrid composites according to the scheme of directional fiber netting are presented. Reinforcement is carried out by combining carbon fibers and metal wire, impregnation with a polymer binder by infusion. The results of experimental evaluation of the tensile strength of composites reinforced only with wire, as well as hybrid samples with different percentages of carbon and metal fibers are presented. A significant dependence of the strength of the hybrid composite on the volume ratios of reinforcing materials and technological factors has been established. Design and technology recommendations aimed at improving the functional parameters of the hybrid composite are formulated.

About the authors

V. I. Khaliulin

Kazan National Research Technical University named after A.N. Tupolev

Author for correspondence.
Email: pla.kai@mail.ru
ORCID iD: 0000-0003-4340-0787

Doctor of Science (Engineering), Head of the Department of Aircraft Production

Russian Federation

P. A. Petrov

Kazan National Research Technical University named after A.N. Tupolev

Email: 13petrof@mail.ru

Engineer of the Center of Composite Technologies

Russian Federation

V. A. Kostin

Kazan National Research Technical University named after A.N. Tupolev

Email: VAKostin@kai.ru

Doctor of Science (Engineering), Head of the Department of Structural Strength

Russian Federation

N. V. Levshonkov

Kazan National Research Technical University named after A.N. Tupolev

Email: n-levshonkov@mail.ru

Candidate of Science (Engineering), Associate Professor of the Department of Aircraft Construction and Design

Russian Federation

References

  1. Komarov V.A. Theoretical basis for design of load-bearing structures produced using additive technologies. Ontology of Designing. 2017. V. 7, no. 2 (24). P. 191-206. (In Russ.). doi: 10.18287/2223-9537-2017-7-2-191-206
  2. Komarov V.A. Design and material. Ontology of Designing. 2023. V. 13, no. 2 (48). P. 175-191. (In Russ). doi: 10.18287/2223-9537-2023-13-2-175-191
  3. Shabalin L.P., Savinov D.V., Puzyretskii E.A., Mareskin I.V. A technique for stress-strain state analysis, optimization and experimental study of a hybrid composite-metal propeller blade. Russian Aeronautics. 2022. V. 65, Iss. 2. P. 260-267. doi: 10.3103/S1068799822020052
  4. Antipov V.V., Senatorova O.G., Sidelnikov V.V. Investigation of fire resistance of hybrid aluminium­glassplastic SIAL laminates. Trudy VIAM. 2013. No. 3. (In Russ.)
  5. Postnova M.V., Postnov V.I. Role of MPСM structures and their effect on vibration fatigue characteristics of gte constructive components. Trudy VIAM. 2017. No. 1 (49). (In Russ.). doi: 10.18577/2307-6046-2017-0-1-7-7
  6. Khaliulin V.I., Batrakov V.V., Petrov P.A Problem description and a study of reinforcement components to produce composite hybrid structures. Russian Aeronautics. 2022 V. 65, Iss. 4. P. 843-854. doi: 10.3103/S1068799822040250
  7. Benedict A.V. An experimental investigation of GLARE and restructured fiber metal laminates. Master's thesis. Daytona Beach, 2012. 103 p.
  8. Unal P.G. 3D woven fabrics. Woven Fabrics. 2012. P. 91-120. doi: 10.5772/37492
  9. Carvelli V., Ventura G., Poggi C. 3D reinforcement of composite materials. Master's thesis. Milan, 2011. 79 p.
  10. Nelyub V.A., Grashchenkov D.V., Kogan D.I., Sokolov I.A. Use experience of direct formation methods in case of production of big glass-reinforced plastic parts. Khimicheskaya Tekhnologiya. 2012. V. 13, no. 12. P. 735-739. (In Russ.)
  11. Chursova L.V., Dushin M.I., Khrul'kov A.V., Mukhametov R.R. Osobennosti tekhnologii izgotovleniya detaley iz kompozitsionnykh materialov metodom propitki pod davleniem. Sb. tezisov dokladov mezhotraslevoy nauchno-tekhnicheskoy konferentsii «Kompozitsionnye Materialy v Aviakosmicheskom Materialovedenii» (February, 17, 2009, Moscow). Moscow: VIAM Publ., 2009. P. 17. (In Russ.)
  12. Gliesche K. Application of the tailored fibre placement (TFP) process for a local reinforcement on an «open-hole» tension plate from carbon/epoxy laminates. Composites Science and Technology. 2003. V. 63, Iss. 1. P. 81-88. doi: 10.1016/s0266-3538(02)00178-1
  13. Kartashova E.D., Muyzemnek A.Yu. Technological defects of polymeric layered composite materials. University Proceedings. Volga Region. Technical Sciences. 2017. No. 2 (42). P. 79-89. (In Russ.). doi: 10.21685/2072-3059-2017-2-7
  14. Coppola A.M., Huelskamp S.R., Tanner C., Rapking D., Ricchi R.D. Application of tailored fiber placement to fabricate automotive composite components with complex geometries. Composite Structures. 2023. V. 313. doi: 10.1016/j.compstruct.2023.116855
  15. Spickenheuer A., Leippranda A., Bittricha L., Uhliga K., Richtera E., Heinricha G. Process-dependent material properties for structural simulation of composites made by tailored fibre placement. Proceedings of the ECCM16-16th European conference on composite materials (June, 22-26, 2014, Seville, Spain).
  16. Makhkamov N.Y., Yusupov G.U. Properties of metal-based and nonmetal-based composite materials. Theoretical & Applied Science. 2020. V. 86, Iss. 6. P. 629-634. doi: 10.15863/tas.2020.06.86.115
  17. Bigg D.M. Mechanical, thermal, and electrical properties of metal fiber‐filled polymer composites. Polymer Engineering & Science. 1979. V. 19, Iss. 16. P. 1188-1192. doi: 10.1002/pen.760191610
  18. Carbas R.J.C., Palmares M.P., da Silva L.F.M. Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations. Manufacturing Review. 2020. V. 7. doi: 10.1051/mfreview/2019027

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies