Determining aerodynamic characteristics of small unmanned aerial vehicles involving flight experiment
- Authors: Lukyanov O.E.1, Zolotov D.V.1, Espinosa Barsenas O.1, Komarov V.A.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 22, No 3 (2023)
- Pages: 59-74
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/26889
- DOI: https://doi.org/10.18287/2541-7533-2023-22-3-59-74
- ID: 26889
Cite item
Full Text
Abstract
The methodology, software and hardware and the results of determining the aerodynamic characteristics of a small-sized UAV on the basis of a flight experiment are considered in the article. The peculiarity of the proposed technique is the use of small-sized UAVs to study the aerodynamic characteristics of various aerodynamic configurations and new engineering solutions. The main feature of the software and hardware implementation of the methodology consists in the use of small-sized electronic elements and electromechanical components available on the market in order to develop a sufficiently universal system of airborne measurements. The description and technical characteristics of the developed system are given. The system was tested on a specially designed and manufactured UAV with a traditional aerodynamic configuration that was designed using well-known and sufficiently reliable aerodynamic characteristics for such aircraft. The results of processing the data of the flight experiment and the aerodynamic characteristics calculated on its basis are presented. They show fairly good agreement with the parameters laid down in the design of the experimental UAV.
About the authors
O. E. Lukyanov
Samara National Research University
Author for correspondence.
Email: lukyanovoe@mail.ru
ORCID iD: 0000-0003-3762-0249
Candidate of Science (Engineering), Associate Professor of the Department of Aircraft Construction and Design
Russian FederationD. V. Zolotov
Samara National Research University
Email: dmitriy.zolotov.98@mail.ru
Postgraduate Student
Russian FederationO. Espinosa Barsenas
Samara National Research University
Email: oscar.espinosa.barcenas@gmail.com
ORCID iD: 0000-0001-6538-7283
Postgraduate Student
Russian FederationV. A. Komarov
Samara National Research University
Email: komarov.va@ssau.ru
Doctor of Science (Engineering), Professor, Professor of the Department of Aircraft Construction and Design
Russian FederationReferences
- Mironov A.D., Vladychin G.P., Kondratov A.A. Metody issledovaniy na letayushchikh modelyakh [Methods of flying model studies]. Moscow: Mashinostroenie Publ., 1988. 144 p.
- Korsun O.N., Nikolayev S.V. Identification of the aerodynamic coefficients of longitudinal motion of an aircraft in the operational range of the attack angles. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015. V. 16, no. 4. P. 269-276. (In Russ.). doi: 10.17587/mau.16.269-276
- Nikolayev S.V. Technique for assessing the stability and controllability characteristics of naval aircraft systems based on the rational combination of modeling, identification and flight experiments. Science and Education of the Bauman MSTU. 2015. No. 10. P. 171-193. (In Russ.). doi: 10.7463/1015.0813316
- Tyurina M.M., Porunov A.A. A system for measuring the altitude-airspeed parameters of rotorcraft and very light flight vehicles. Russian Aeronautics. 2007. V. 50, Iss. 4. P. 422-429. doi: 10.3103/S1068799807040137
- Maksimov A.K. Method of indirect measurement of aircraft aerodynamic angles using accelerometers and pressure sensors. Journal of Instrument Engineering. 2019. V. 62, no. 10. P. 893-899. (In Russ.). doi: 10.17586/0021-3454-2019-62-10-893-899
- Maksimov A.K. Estimation of errors in indirect measurement of aircraft aerodynamic angles using accelerometers and pressure sensors. Journal of Instrument Engineering. 2020. V. 63, no. 7. P. 634-639. (In Russ.). doi: 10.17586/0021-3454-2020-63-7-634-639
- Higashino S.I., Sakurai A. A UAV flight-experiment system for the estimation of aerodynamic characteristics. 2nd AIAA Unmanned Unlimited Conf. and Workshop & Exhibit (September, 15-18, 2003, San Diego, California). doi: 10.2514/6.2003-6584
- Chung P.-H., Ma D.-M., Shiau J.-K. Design, manufacturing, and flight testing of an experimental flying wing UAV. Applied Sciences. 2019. V. 9, Iss. 15. doi: 10.3390/app9153043
- Sato M., Muraoka K. Flight controller design and demonstration of quad-tilt-wing unmanned aerial vehicle. Journal of Guidance, Control, and Dynamics. 2015. V. 38, Iss. 6. P. 1071-1082. doi: 10.2514/1.g000263
- Hamzah M.A.H. Designing a flight information collection system for calculating the aerodynamic characteristics of a UAV. Ontology of Designing. 2023. V. 13, no. 1. P. 90-98. (In Russ.). doi: 10.18287/2223-9537-2023-13-1-90-98
- Pixhawk. Flight controller. Available at: https://pixhawk.org/products/
- FeuyuTech FY-51AP. Flight controller. Available at: https://store.feiyu-tech.com/collections/uav-autopilot/products/feiyutech-fy-51ap-flight-controller-for-fixed-wing-ayerial-photography-uav-drone-rc-plane-fpv
- AutoQuad autonomous multi rotor vechile controller. Available at: http://autoquad.org/
- Balakin V.L., Lazarev Yu.L. Dinamika poleta samoleta. Raschet traektoriy i letnykh kharakteristik: konspekt lektsiy [Aircraft flight dynamics. Calculation of trajectories and flight performance: lecture notes]. Samara: Samara State Aerospace University Publ., 2002. 56 p.
- Ostoslavskiy I.V., Strazheva I.V. Dinamika poleta. Traektorii letatel'nykh apparatov [Flight dynamics. Aircraft trajectories]. Moscow: Mashinostroenie Publ., 1969. 501 p.
- Lukyanov O.E., Espinosa Barsenas O.U., Zolotov D.V. Experimental model of an electric power plant for small UAV's automatic control systems. 2021 International Scientific and Technical Engine Conference (EC) (June, 23-25, 2021, Samara, Russian Federation). doi: 10.1109/ec52789.2021.10016802
- Lukianov O.E., Tarasova E.V., Martynova V.A. Remote management of experimental installation and utomation of processing of experimental data. Izvestiya Samarskogo nauchnogo tsentra RAN. 2017. V. 19, no. 1. P. 128-132. (In Russ.)
- Gorlin S.M. Eksperimental'naya aeromekhanika: ucheb. posobie dlya vuzov [Experimental aeromechanics: study guide for university students]. Moscow: Vysshaya Shkola Publ., 1970. 423 p.
- Buck A.L. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology. 1981. V. 20, Iss. 12. P. 1527-1532. doi: 10.1175/1520-0450(1981)020<1527:nefcvp>2.0.co;2
- Beard R.W., McClain T.U. Small unmanned aircraft: Theory and practice. Princeton University Press, 2012. 320 p. doi: 10.1515/9781400840601
- Chelnokov Yu.N. Kvaternionnye modeli i metody dinamiki, navigatsii i upravleniya dvizheniem [Quaternion models and methods of dynamics, navigation and motion control]. Moscow: Fizmatlit Publ., 2011. 556 p.
- Branets V.N., Shmyglevskiy I.P. Primenenie kvaternionov v zadachakh orientatsii tverdogo tela [Use of quaternions in problems of rigid body orientation]. Moscow: Nauka Publ., 1973. 320 p.
- BMP180. Digital pressure sensor. Available at: https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
- BNO055. Intelligent 9-axis absolute orientation sensor. Available at: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
- MPXV7002. Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated. Available at: https://www.nxp.com/docs/en/data-sheet/MPXV7002.pdf
- Obzor modulya micro SD kart, SPI [Survey of a module of micro SD cards]. Available at: https://robotchip.ru/obzor-modulya-micro-sd-kart-spi/
- The Arduino Nano 33 BLE. Available at: https://docs.arduino.cc/static/8d5ff8c913179005a1245cf76bc97df7/ABX00031-datasheet.pdf
- Lukyanov O.E., Zolotov D.V. Methodological support for the training of UAV designers and operators. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2021. V. 20, no. 1. P. 14-28. (In Russ.). doi: 10.18287/2541-7533-2021-20-1-14-28