Modification of the surface of silicon carbide parts by laser treatment for improving their tribological properties


Laser microstructuring of the surface can be used for improving tribological properties of materials. This trend suggests a laser treatment to create on the material’s surface microstructures with spatial selectivity of physical-mechanical properties, such as microhardness, friction factor, etc. The microstructuring of the external surface of gas-dynamic compactions is perspective. To increase the capacity of the practical use of it is expedient to enhanced functionality through the use of laser microstructuring of the more common laser systems with pulse durations in the millisecond range. A method of surface’s modification of silicon carbide details by laser treatment for improving their tribological properties has been developed. A material structure in the heat-affected zone after laser microstructuring has been studied. Evaluated the morphological changes of the treated surface after a repetitively pulsed laser exposure. It was established that the pulse-periodic laser exposure leads to the formation on the polished surface of the silicon carbide parts recesses are round to oval. Along with the formation of acyclic microrelief occurs modifying surface structure details. Under laser exposure on the surface of the ceramic material is a decomposition of silicon carbide and graphite to form a solid solution of carbon in silicon. Supposed to carry out the study of the tribological properties of the resulting structures.

About the authors

S. P. Murzin

Samara State Aerospace University

Author for correspondence.

Doctor of Science (Engineering)

Professor of the Department of Power Plant Automatic Systems, Head of the Research & Education Center of Laser Systems and Technologies

Russian Federation

V. B. Balyakin

Samara State Aerospace University


Doctor of Science (Engineering), Professor

Head of the Department of Elements of Mechanical Design

Russian Federation

L. V. Zhuravel

Samara State University


Candidate of Science (Engineering)

Associate Professor of the Department of Solid State Physics and Non-equilibrium Systems

Russian Federation


  1. Blatter A., Maillat M., Pimenov S.M., Shafeev G.A., Simakin A.V. Lubricated friction of laser micro-patterned sapphire flats // Tribology Letters. 1998. V. 4, no. 3-4. P. 237-241.
  2. Etsion I. State of the art in laser surface texturing // Journal of Tribology. 2005. V. 127, no. 1. P. 248-253. doi: 10.1115/1.1828070
  3. Radek N., Pietraszek J., Antoszewski B. The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology // Advanced Materials Research. 2014. V. 874. P. 29-34. doi: 10.4028/ href='' target='_blank'>
  4. Yu X.Q., He S., Cai R.L. Frictional characteristics of mechanical seals with a laser-textured seal surface // Journal of Materials Processing Technology. 2002. V. 129, no.1-3. P. 463-466. doi: 10.1016/s0924-0136(02)00611-8
  5. Komlenok M.S., Pimenov S.M., Kononenko V.V., Konov V.I., Scheibe
  6. H.-J. Laser surface microstructuring of superhard amorphous Carbon films // Journal of Nano and Microsystem technique. 2008. No. 3. P. 48- 53. (In Russ.)
  7. Falaleev S.V., Novikov D.K., Balyakin V.B., Sedov V.V. Torcovye gazodinamicheskie uplotnenija [Mechanical gas dynamic seals]. Samara: Samarskiy nauchnyy tsentr RAN, 2013. 300 p.
  8. Falaleev S.V., Chegodaev D.E. Torcovye beskontaktnye uplotnenija dvigatelej letatel'nyh apparatov: osnovy teorii i proektirovanija [Mechanical seal proximity of aircraft engines: fundamentals of theory and design]. Moscow: MAI, 1998. 274 p.
  9. Falaleev S.V., Balyakin V.B., Novikov D.K., Rosseev N.I., Medvedev S.D. Dynamics of the "dry" seals // Gas Industry of Russia. 2001. No. 10. P. 66-68. (In Russ.)
  10. Bondarchuk P.V., Falaleev S.V. The design of long-term gas-dynamic mechanical seal support aircraft engine // Vestnik of the Samara State Aerospace University. 2011. No. 2(26). P. 150-157. (In Russ.)
  11. Seifert G., Kaempfe M., Syrowatka F., Harnagea C., Hesse D., Graener H. Selforganized structure formation on the bottom of femtosecond laser ablation craters in glass // Applied Physics A. 2005. V. 81. P. 799-803. doi: 10.1007/s00339-004-2867-8
  12. Murzin S.P. Increasing the efficiency of laser treatment of materials using elements of computer optics // Journal of Advanced Materials. 2003. V. 10, no. 2. P. 181-185.
  13. Murzin S.P., Tregub V.I., Osetrov E.L., Nikiforov A.M. Formation of nanoporous structures of metallic materials cyclic elastic plastic deformation under laser exposure // Izvestiya Samarskogo nauchnogo tsentra RAN. 2010. V. 12, no. 4. P. 182-185. (In Russ.)
  14. Murzin S.P. Developing ways of intensification of formation of nanoporous structures of metallic materials selective laser sublimation alloy components // Computer Optics. 2011. V. 35, no. 2. P. 175-179. (In Russ.)
  15. Murzin S.P., Osetrov E.L., Nikiforov A.M. Welding of heat-resistant nickel-base alloys by pulsed laser radiation // Izvestiya Samarskogo nauchnogo tsentra RAN. 2008. V. 10, no. 3. P. 884-886. (In Russ.)
  16. Murzin S.P., Mezhenin A.V., Osetrov E.L. Calculation of temperature
  17. fields in constructional materials in the program complex STAR-CD // Izvestiya Samarskogo nauchnogo tsentra RAN. 2008. V. 10, no. 3. P. 767-771. (In Russ.)
  18. Kazanskiy N.L., Murzin S.P., Klotchkov S.Yu. Formation of the required power exposure in the laser materials processing using radiation focusators // Computer Optics. 2005. No. 28. P. 89-93. (In Russ.)



Abstract: 3297

PDF (Russian): 1911




  • There are currently no refbacks.

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies