Life cycle assessment of the production chain of oil-rich biomass to generate BtL aviation fuel derived from micraoalgae


Cite item

Full Text

Abstract

Considerable efforts are made to generate drop-in aviation fuels from microalgae to avoid competition with food production. Synthetic biofuel from oil-rich biomass is produced along four process lines: cultivation, harvest, extraction of raw material and conversion to fuel. This study deals with the life cycle assessment of fuel obtained from cultivation of the fresh water alga Auxenochlorella protothecoides and concentrates on the cultivation in open ponds as well as the harvesting steps preconcentration, electroporation and dewatering. Energy balance and environmental impact is analysed using GaBi software and data base. The main goal is to identify those factors or processes exerting the strongest impact, either environmentally or from the point of view of the energy balance. Production of one kilogram of dry oil-rich algal biomass (kg DM) consumes 118.56 MJ of primary energy. The primary energy demand is apportioned as follows: 71.7 % during proliferation in Erlenmeyer flags and bubble columns, 15.5 % by cultivation in raceway ponds and 12.8 % in preconcentration, electroporation and dewatering. This converts into a net energy ratio (NER) of 0.266 and a CO2-equivalent of 6.45 kg CO2 per kg DM. These values are disadvantageous when compared to kerosene (NER=0.867, 0.384 kg CO2 per kg kerosene). Production can be optimized using process energy from regenerative sources such as hydroelectric power (NER = 0.545, 1.27 CO2 per kg DM). In this case total primary energy input must be corrected for the portion of renewable sources resulting in a NERcorr of 3.04. CO2-equivalents per kg DM remain unfavourably high as compared to kerosene; the main driver responsible for this discrepancy is the usage of freshwater and fertilizer.

About the authors

M. Gehrer

University of Stuttgart

Author for correspondence.
Email: stephan.staudacher@ila.uni-stuttgart.de

Research Associate

Germany

H. Seyfried

University of Stuttgart

Email: stephan.staudacher@ila.uni-stuttgart.de

Doctor of Science, Professore

Germany

S. Staudacher

Institute of Aircraft Propulsion Systems (ILA), University of Stuttgart

Email: stephan.staudacher@ila.uni-stuttgart.de

Doctor of Science, Professore

Germany

References

  1. Becker E.W. Microalgae: Biotechnology and Microbiology. New York: Cambridge University Press, 2008. 519 p.
  2. Ben-Amotz A. Bio-fuel and CO2 Capture by Algae. Seambiotic Ltd., 2008.
  3. Borowitzka M.A. Algal Culturing Techniques. Section no. 14. Culturing microalgae in outdoor ponds. 2005. 596 p.
  4. Büchle C. Konstruktion und Aufbau eines Photobioreaktors zur onlineÜberwachung der Produktivität von Algen und Erfassung der Produktivitätsparameter von Auxenochlorella protothecoides. Diploma Thesis, Institute of Botany, University of Stuttgart, 2013.
  5. Chisti Y. Biodiesel from Microalgae // Biotechnology Advances. 2007. V. 25, no. 3. P. 294-306. doi: 10.1016/j.biotechadv.2007.02.001
  6. Cooney M. et al. Extraction of Bio-oils from Microalgae // Separation & Purification Reviews. 2011. V. 38, no. 4. P. 291-325. doi: 10.1080/15422110903327919
  7. Daggett D. et al. Alternative Fuels and Their Potential Impact on Aviation. ICAS-2006-5.8.2, Hamburg, Germany, 2006.
  8. Daggett D. et al. Alternative Fuels for Use in Commercial Aircraft. ISABE-2007-1196, Peking, China, 2007.
  9. Din En ISO 14044 Umweltmanagement - Ökobilanz-Anforderungen und Anleitung. Deutsches Institut für Normung e.V., 2006.
  10. Frey W. et al. Konditionierung von Mikroalgen mit gepulsten elektrischen Feldern für die energetische Nutzung. Sustainable BioEnconomy, 2011.
  11. Gea westfalia separator group: Separation Technology for Algae Production. GEA Mechanical Equipment GmbH, Deutschland, 2012.
  12. Göttel M. et al. Influence of Pulsed Electric Field (PEF) Treatment on the Extraction of Lipids from Microalgae Auxenochlorella protothecoides //
  13. IEEE International Conference on Plasma Science, 2011. doi: 10.1109/plasma.2011.5993394
  14. Graham L.E. et al. Algae. New Jersey: Prentice-Hall Inc., 2000. 640p.
  15. Grundfos: Pumpenhandbuch, 2004.
  16. International air transport association: Report on Alternative Fuels. www.iata.org, 2008.
  17. Jorquera O. et al. Comparative Energy Life-Cycle Analyses of Microalgal Biomass Production in Open Ponds and Photobioreactors // Bioresource Technology. 2010. V. 101, no. 4. P. 1406-1413. doi: 10.1016/j.biortech.2009.09.038
  18. Kadam K.L. Environmental Implications of Power Generation via Coal-Microalgae Cofiring // Energy. 2002. V. 27, no. 10. P. 905-922. doi: 10.1016/s0360-5442(02)00025-7
  19. Manish S. et al. Sustainable Analysis of Renewables for Climate Change Mitigation // Energy for Sustainable Development. 2006. V. 10, no. 4. P. 25-36. doi: 10.1016/s0973-0826(08)60553-0
  20. PE International: Gabi Software: manual, 2012.
  21. Pieralisi: Vertikale Tellerseparatoren. StampaNova, Jesi (AN), Italy, 2000.
  22. Connelly R. et al. Second-Generation Biofuel from High-Efficiency Algal-Derived Biocrude // Bioenergy Research: Advances and Applications. 2008. P. 153-170. doi: 10.1016/B978-0-444-59561-4.00010-3
  23. Sheehan J. et al. A Look back at the U.S. Department of Energy’s and Aquatic Species Program: Biodiesel from Algae. Close-Out Report, Golden, Colorado, USA: National Renewable Energy Laboratory, 1998.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies