The problems of creating a propulsion system of a new generation supersonic passenger aircraft (review)

Cover Page

Cite item

Full Text

Abstract

The problems of creating a propulsion system for a new generation supersonic passenger aircraft are considered on the basis of a review of the work on the supersonic transport being carried out in the world. It is shown that the desire to achieve high flight performance and commercial effectiveness of a supersonic passenger aircraft while meeting up-to-date environmental requirements leads to contradictory technical solutions regarding the propulsion system: the location and number of engines, the scheme of the air intake and nozzle, the choice of the scheme and design parameters of the engine, the use of new high-temperature materials in the engine hot section, etc. The features of the operating conditions of the engine components of a supersonic passenger aircraft in comparison with the engines of up-to-date subsonic civil aviation aircraft and supersonic military aircraft are indicated. The calculated estimates of the influence of various technical solutions on the parameters of the supersonic passenger aircraft engine are given. Due to the complexity and multi-criterion nature of the task of creating a supersonic passenger aircraft propulsion system, its solution requires an integrated approach based on close cooperation of specialists in airframe aerodynamics, engine, etc.

About the authors

A. D. Alendar

Central Institute of Aviation Motors;
Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: adalendar@ciam.ru
ORCID iD: 0000-0002-5142-1257

Engineer;
Postgraduate Student

Russian Federation

A. I. Lanshin

Central Institute of Aviation Motors

Email: ailanshin@ciam.ru

Doctor of Science (Engineering), Senior Researcher, Advisor to the General Director for Science

Russian Federation

A. A. Evstigneev

Central Institute of Aviation Motors

Email: aaevstigneev@ciam.ru

Head of Sector of the Department of Aircraft Engines

Russian Federation

K. Ya. Yakubovsky

Central Institute of Aviation Motors

Email: kyyakubovsky@ciam.ru

Researcher of the Department Design Bureau of Rotary Piston Engines

Russian Federation

M. V. Siluyanova

Moscow Aviation Institute (National Research University)

Email: dc2mati@yandex.ru
ORCID iD: 0000-0002-3842-6803

Doctor of Science (Engineering), Associate Professor, Professor of the Department of Technologies of Production and Operation of Aircraft Engines

Russian Federation

References

  1. Kraev V.M., Siluyanova M.V., Tikhonov A.I. Creation of supersonic civil aviation in Russia. Russian Engineering Research. 2020. V. 40, Iss. 9. P. 755-758. 10.3103/S1068798X20090063
  2. Shchennikov V.S. Prospects for the development of supersonic passenger aircraft. Vestnik of Economic Security. 2018. No. 2. P. 369-373. (In Russ.)
  3. Lanshin A.I., Komratov D.V., Postnikov A.A. The world-class research center «Supersonic» in the field of aircraft engine development. Aviation Engines. 2022. No. 1 (14). P. 69-78. doi: 10.54349/26586061_2022_1_69
  4. Sun Y., Smith H. Review and prospect of supersonic business jet design. Progress in Aerospace Sciences. 2017. V. 90. P. 12-38. doi: 10.1016/j.paerosci.2016.12.0033
  5. Rallabhandi S.K., Loubeau A. Summary of propagation cases of the third AIAA sonic boom prediction workshop. Journal of Aircraft. 2022. V. 59, Iss. 3. P. 578-594. doi: 10.2514/1.c036327
  6. Chelebyan O.G., Strokin V.N., Shilova T.V. Emission assessment of supersonic aircraft engines. Aviation Engines. 2021. No. 3 (12). P. 55-62. (In Russ.)
  7. Berton J.J., Jones S.M., Seidel J.A., Huff D.L. Noise predictions for a supersonic business jet using advanced take-off procedures. The Aeronautical Journal. 2018. V. 122, Iss. 1250. P. 556-571. doi: 10.1017/aer.2018.6
  8. Smith H. A review of supersonic business jet design issues. The Aeronautical Journal. 2007. V. 111, Iss. 1126. P. 761-776. doi: 10.1017/s0001924000001883
  9. Hardeman A.B., Maurice L.Q. Sustainability: key to enable next generation supersonic passenger flight. IOP Conference Series: Materials Science and Engineering. 2021. V. 1024, Iss. 1. doi: 10.1088/1757-899x/1024/1/012053
  10. Mirzoyan A.A., Kokorev V.P. Key problems in the development of advanced concepts of supersonic passenger aircraft (review based on American publications). Dvigatel'. 2011. No. 2 (74). P. 16-21. (In Russ.)
  11. Korovkin V., Evstigneev A., Makarov V., Strelets D., Shevelev O., Kopiev V., Belyaev I. Candidate engines definition for future multy speed supersonic civil aircraft. 21st ISABE Conference 2013 (September, 9-13, 2013, Busan, Korea). V. 3. P. 1881-1883.
  12. HISAC-T-6-26-1. Publishable Activity Report. Dassault Aviation. Issue 1. July 21, 2008. 121 p.
  13. Welge H.R., Nelson C., Bonet J. Supersonic vehicle systems for the 2020 to 2035 timeframe. 28th AIAA Applied Aerodynamics Conference (28 June – 1 July, 2010, Chicago, Illinois). doi: 10.2514/6.2010-4930
  14. Morgenstern J., Norstrud N., Stelmack M., Skoch C. Final report for the advanced concept studies for supersonic commercial transports entering service in the 2030 to 2035 period, N+3 supersonic program. NASA/CR-2010-216796. PMF-01623. August 2010. 123 p.
  15. Aerion AS2. Available at: https://www.businessjetinteriorsinternational.com/ features/aerion-as2.html
  16. Spike Aerospace. Available at: https://www.spikeaerospace.com/
  17. Boom Overture. Available at: https://boomsupersonic.com/overture
  18. Chernyshev S.L., Gorbovskoy V.S., Kazhan A.V., Korunov A.O. Re-entry vehicle sonic boom issue: modelling and calculation results in windy atmosphere based on the augmented Burgers equation. Acta Astronautica. 2022. V. 194. P. 450-460. doi: 10.1016/j.actaastro.2021.12.038
  19. Bashkirov I.G., Gilyazev D.I., Gorbovskoj V.S., Dementev A.A., Ivanyushkin A.K., Kazhan A.V., Kazhan V.G., Karpov E.V., Novogorodtsev E.V., Shanygin A.N., Shenkin A.V., Fomin D.Yu., Chernyshev S.L. Sverkhzvukovoy samolet [Supersonic aircraft]. Patent RF, no. 2753443, 2021. (Publ. 16.08.2021, bull. no. 23)
  20. Gordin M.V., Palkin V.A Concepts of aero engines for advanced civil aircraft. Aviation Engines. 2019. No. 3 (4). P. 7-16. (In Russ.)
  21. Seddon J., Goldsmith E.L. Intake aerodynamics. American Institute of Aeronautics and Astronautics, 1985. 442 p.
  22. Gorbovskoy V.S., Kazhan A.V., Kazhan V.G., Chernyshev S.L. The influence of the overpressure signature shape on the sonic boom loudness. TsAGI Science Journal. 2020. V. 51, Iss. 2. P. 111-129. doi: 10.1615/TsAGISciJ.2020034757
  23. Howe D. Engine placement for sonic boom mitigation. 40th AIAA Aerospace Sciences Meeting and Exhibit (January, 14-17, 2002, Reno, NV, U.S.A.). doi: 10.2514/6.2002-148
  24. Kovalenko V.V., Chernyshev S.L. On the issue of reducing sonic boom. Uchenye zapiski TsAGI. 2006. V. 37, no. 3. P. 53-63. (In Russ.)
  25. Pochkin Ya.S., Rossikhin A.A., Khaletskiy Yu.D. Ekranirovanie shuma ventilyatora fragmentom kryla. Sb. tezisov Vserossiyskogo Aeroakusticheskogo Foruma (September, 20-25, 2021, Gelendzhik). Iss. 2807. Zhukovskiy: TsAGI Publ., 2021. P. 35-36. (In Russ.)
  26. Remeev N.Kh. Aerodinamika vozdukhozabornikov sverkhzvukovykh samoletov [Aerodynamics of supersonic aircraft air intakes]. Zhukovskiy: TsAGI Publ., 2002. 178 p.
  27. Brezillon J., Carrier G., Laban M. Multi-Disciplinary optimization including environmental aspects applied to supersonic aircraft. 27th International Congress of the Aeronautical Sciences, ICAS 2010 (September, 19-24, 2010, Nice, France).
  28. Karpov E.V., Koltok N.G., Novogorodtsev E.V., Kazhan A.V. Eksperimental'noe issledovanie kharakteristik nereguliruemogo trapetsievidnogo vozdukhozabornika (VZ) v nadkryl'evoy komponovke sverkhzvukovogo grazhdanskogo samoleta (SGS). Materialy Mezhotraslevoy Nauchno-Tekhnicheskoy Konferentsii «Sovremennye Problemy Aerogazodinamiki Silovykh Ustanovok Letatel'nykh Apparatov» (October, 21-22 2021, Zhukovskiy). Moscow: TsAGI Publ., 2021. P. 46-48. (In Russ.)
  29. Novogorodtsev E.V., Karpov E.V., Koltok N.G. Characteristics improvement of spatial fixed-geometry air intakes of external compression based on boundary layer control systems application. Aerospace MAI Journal. 2021. V. 28, no. 4. P. 7-27. (In Russ.) doi: 10.34759/vst-2021-4-7-27
  30. Karpov E.V., Koltok N.G., Novogorodtsev E.V. Chislennoe issledovanie kharakteristik obtekaniya oval'nogo vozdukhozabornika v nadkryl'evoy komponovke sverkhzvukovogo grazhdanskogo samoleta. Materialy Mezhotraslevoy Nauchno-Tekhnicheskoy Konferentsii «Sovremennye Problemy Aerogazodinamiki Silovykh Ustanovok Letatel'nykh Apparatov» (October, 21-22 2021, Zhukovskiy). Moscow: TsAGI Publ., 2021. P. 45-46. (In Russ.)
  31. Slater J.W. Methodology for the design of streamline-traced external-compression supersonic inlets. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (July, 28-30, 2014, Cleveland, OH). doi: 10.2514/6.2014-3593
  32. Garzon G.A. Use of a translating cowl on a SSBJ for improved takeoff performance. 45th AIAA Aerospace Sciences Meeting and Exhibit (January, 8-11, 2007, Reno, Nevada). doi: 10.2514/6.2007-25.
  33. Belova V.G., Vinogradov V.A., Komratov D.V., Stepanov V.A. Kharakteristiki vozdukhozabornogo ustroystva sverkhzvukovogo delovogo samoleta pri imitatsii vozmushcheniy. Materialy XXX Nauchno-Tekhnicheskoy Konferentsii po Aerodinamike, Posvyashchennoy 150-letiyu so Dnya Rozhdeniya S.A. Chaplygina (April, 25-26, 2019, Moscow oblast). Zhukovskiy: TsAGI Publ., 2019. P. 50-51. (In Russ.)
  34. Lyubimov D.A., Kukshinova I.V., Vinogradov V.A. A RANS/ILES study of the features of the flow in the spatial air intake of a supersonic business-class aircraft in throttle modes. High Temperature. 2022. V. 60, Suppl. 1 P. S86-S93. doi: 10.1134/S0018151X21040155
  35. Belova V.G., Vinogradov V.A., Komratov D.V., Makarov A.O., Stepanov V.A. Raschetno-eksperimental'nye issledovaniya vkhodnogo ustroystva silovoy ustanovki sverkhzvukovogo delovogo samoleta. Materialy XXIX Nauchno-Tekhnicheskoy Konferentsii po Aerodinamike (March, 01-02, 2018, Bogdanikha, Moscow oblast). Zhukovskiy: TsAGI Publ., 2018. P. 55. (In Russ.)
  36. Vinogradov V.A., Kusyukbaeva D.I., Stepanov V.A. Sravnenie raschetnykh i eksperimental'nykh dannykh po integral'nym kharakteristikam vozdukhozabornika v komponovke s korpusom sverkhzvukovogo letatel'nogo apparata. Materialy XXIX Nauchno-Tekhnicheskoy Konferentsii po Aerodinamike (March, 01-02, 2018, Bogdanikha, Moscow oblast). Zhukovskiy: TsAGI Publ., 2018. P. 80. (In Russ.)
  37. Vinogradov V.A., Melnikov Ya.A., Stepanov V.A. Choice and design of a 3D fixed-geometry inlet for a small supersonic business aircraft. TsAGI Science Journal. 2017. V. 48, Iss. 2. P. 141-158. doi: 10.1615/TsAGISciJ.2017021109
  38. Vinogradov V.A., Makarov A.Yu., Melkonyan N.A., Stepanov V.A. Experimental investigation of a 3D fixed-geometry inlet for a supersonic business aircraft. TsAGI Science Journal. 2017. V. 48, Iss. 3. P. 261-276. doi: 10.1615/TsAGISciJ.2017022808
  39. Shorstov V.A. Vozdukhozabornik s izmenyaemoy geometriey dlya sverkhzvukovogo passazhirskogo letatel'nogo apparata [Variable geometry air intake for supersonic passenger aircraft]. Patent RF, no. 2766238, 2022. (Publ. 10.02.2022, bull. no. 4)
  40. Nechaev Yu.N. Vkhodnye ustroystva sverkhzvukovykh samoletov [Air intakes of supersonic aircraft]. Moscow: Voenizdat Publ., 1963. 140 p.
  41. Conners T.R., Howe D.C. Supersonic inlet shaping for dramatic reductions in drag and sonic boom strength. 44th AIAA Aerospace Sciences Meeting and Exhibit (January, 9-12, 2006, Reno, Nevada). doi: 10.2514/6.2006-30
  42. Conners T.R., Merret J.M., Howe D.C., Tacina K., Hirt S. Wind tunnel testing of an axisymmetric isentropic relaxed external compression inlet at Mach 1.97 design speed. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (July, 8-11, 2007, Cincinnati, OH). doi: 10.2514/6.2007-5066
  43. Ibragimov M.R., Novikov A.P., Novikov M.P., Trifonov A.K., Yudin V.G. Vozdukhozabornik sverkhzvukovogo passazhirskogo samoleta [The air intake of a supersonic passenger aircraft]. Patent RF, no. 196778, 2020. (Publ. 16.03.2020; bull. no. 8)
  44. Ibragimov M.R., Novikov A.P., Novikov M.P., Trifonov A.K., Yudin V.G. Vozdukhozabornik sverkhzvukovogo passazhirskogo samoleta [The air intake of a supersonic passenger aircraft]. Patent RF, no. 196781, 2020. (Publ. 16.03.2020; bull. no. 8)
  45. Vinogradov V.A., Stepanov V.A. Vozdukhozabornik s izmenyaemoy geometriey dlya sverkhzvukovogo letatel'nogo apparata (varianty) [Air intake with variable geometry for supersonic aircraft (versions)]. Patent RF, no. 2353550, 2009. (Publ. 27.04.2009, bull. no. 12)
  46. Conners T., Wayman T. The feasibility of high-flow nacelle bypass for low sonic boom propulsion system design. 29th AIAA Applied Aerodynamics Conference (June, 27-30, 2011, Honolulu, Hawaii). doi: 10.2514/6.2011-3797
  47. Sergeev A.S., Nasyrov R.A., Trifonov A.A. The S-512 airplane: a real step towards supersonic civil aviation. Studencheskiy Vestnik. 2019. No. 27 (77), part 3. P. 58 59. (In Russ.)
  48. Hirt S.M, Chima R.V., Vyas M.A. Experimental investigation of a large-scale low-boom inlet concept. 29th AIAA Applied Aerodynamics Conference (June, 27-30, 2011, Honolulu, Hawaii). doi: 10.2514/6.2011-3796
  49. Belova V.G., Vinogradov V.A., Komratov D.V., Stepanov V.A., Zaharov D.L., Maslov V.P. Development of the appearance of an integrated inlet of a supersonic business/passenger aircraft with a modified compression scheme and a two-circuit flow divider at the output. Proccedings of the International Conference on Aviation Motors ICAM 2020 (May, 18-21, 2021, Moscow, Russia). Moscow: CIAM Publ., 2020. P. 107-110. (In Russ.)
  50. Belova V.G., Vinogradov V.A., Komratov D.V., Stepanov V.A. Issledovaniya dvukhkonturnogo vkhodnogo ustroystva dlya silovoy ustanovki sverkhzvukovogo delovogo samoleta s dvigatelem izmenyaemogo tsikla. Materialy XXX Nauchno-Tekhnicheskoy Konferentsii po Aerodinamike, Posvyashchennoy 150-letiyu so Dnya Rozhdeniya S.A. Chaplygina (April, 25-26, 2019, Moscow oblast). Zhukovskiy: TsAGI Publ., 2019. P. 49-50. (In Russ.)
  51. Makarov V.E., Shorstov V.A. Predvaritel'noe obosnovanie skhemy silovoy ustanovki na osnove reguliruemogo za schet vspomogatel'nogo kanala vozdukhozabornika vnutrennego szhatiya. Materialy Mezhotraslevoy Nauchno-Tekhnicheskoy Konferentsii «Sovremennye Problemy Aerogazodinamiki Silovykh Ustanovok Letatel'nykh Apparatov» (October, 21-22, 2021, Zhukovskiy). Moscow: TsAGI Publ., 2021. P. 62-63. (In Russ.)
  52. Stern A.M., Peracchio A.A. The challenge of reducing supersonic civil transport propulsion noise. 25th Joint Propulsion Conference (July, 10-12, 1989, Monterey, CA). doi: 10.2514/6.1989-2363
  53. Seiner J.M., Krejsa E.A. Supersonic jet noise and the high-speed civil transport. 25th Joint Propulsion Conference (July, 10-12, 1989, Monterey, CA). doi: 10.2514/6.1989-2358
  54. Smith M.J.T., Lowrie B.W., Brooks J.R., Bushell K.W. Future supersonic transport noise – lessons from the past. 24th Joint Propulsion Conference (July, 11-13, 1988, Boston, Massachusetts). doi: 10.2514/6.1988-2989
  55. Sadeghian M., Bandpy M.G. Technologies for aircraft noise reduction: A review. Journal of Aeronautics and Aerospace Engineering. 2020. V. 9, Iss. 1. doi: 10.35248/2168-9792.20.9.219
  56. Shenkin A.V., Mazurov A.P., Bykov A.P. Aerodynamic design of single-expansion ramp nozzle for aircraft with supersonic cruise speed of flight. Proceedings of the 29-th Congress of the International Council of the Aeronautical Sciences, ICAS 2014 (September 7-12, 2014, St. Petersburg, Russia).
  57. Krasheninnikov S., Mironov A., Pavlyukov E., Shenkin A., Zhitenev V. Mixer-ejector nozzles: acoustic and thrust characteristics. International Journal of Aeroacoustics. 2005. V. 4, Iss. 3-4. P. 267-288. doi: 10.1260/1475472054771448
  58. Krasheninnikov S., Mironov A., Paulukov E., Zitenev V., Julliard J., Maingre E. An experimental study of 2-D mixer/ejector noise and thrust characteristics. 2nd AIAA/CEAS Aeroacoustics Conference (May, 06-08, 1996, State College, PA). doi: 10.2514/6.1996-1668
  59. Imaev T.F., Mironov A.K., Polev A.S., Slinko M.B. Vykhlopnoe soplo vozdushno-reaktivnogo dvigatelya [Exhaust nozzle of an aero-jet engine]. Patent RF no. 156534, 2015. (Publ. 10.11.2015, bull. no. 31).
  60. Gorbovskoy V.S., Kazhan V.G., Kazhan A.V., Shenkin A.V. Shumoglushashchee soplo vozdushno-reaktivnogo dvigatelya [Noise-suppressing nozzle of air-jet engine]. Patent RF no. 2732360, 2020. (Publ. 15.09.2020, bull. no. 26)
  61. Bridges J., Zaman K.Q., Heberling B. Basics of mixer-ejectors for quiet propulsion. AIAA Aviation Forum 2020 (June, 15-19, 2020, Virtual). doi: 10.2514/6.2020-2505
  62. Lavrukhin G.N. Aerodinamika reaktivnykh sopel. T. I. Vnutrennie kharakteristiki sopel [Aerodynamics of jet nozzles. V.I. Internal characteristics of nozzles]. Moscow: Nauka. Fizmatlit Publ., 2003. 376 p.
  63. Alendar A.D., Grunin A.N., Siluyanova M.V. Analysis of basic concepts of advanced engines for supersonic civil aircraft on the basis of foreign designers’ experience. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2021. V. 20, no. 3. P. 24-36. (In Russ.). doi: 10.18287/2541-7533-2021-20-3-24-36
  64. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatele stroitel'nykh kompaniy v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigateley (analiticheskiy obzor) [The work of leading aircraft engine construction companies to ensure the creation of advanced aircraft engines (analytical review)]. Moscow: СIAM Publ., 2010. 676 p.
  65. Palkin V.A. Review of works in the USA and Europe on aero engines for civil aircraft of 2020...2040’s. Aviation Engines. 2019. No. 3 (4). P. 63-83. (In Russ.)
  66. Evstigneev A.A., Lanshin A.I., Pochkin Ia.S., Solonin V.I., Khaletskii Iu.D. The problem of noise in promising turbofan engines for long-haul aircraft. Aviation Engines. 2022. No. 2 (15). P. 27-40. (In Russ.)
  67. Alendar A.D., Vikulin A.V., Grunin A.N. Analiz parametrov zarubezhnykh turboreaktivnykh dvigateley tyagoy bolee 35 t. Materialy XIX Vserossiyskoy Nauchno-Tekhnicheskoy Konferentsii «Aerokosmicheskaya Tekhnika, Vysokie Tekhnologii i Innovatsii – 2018» (November, 15-17, 2018, Perm). Perm: PNIPU Publ., 2018. P. 14-17. (In Russ.)
  68. Siluyanova M.V., Alendar A.D., Grunin A.N. Development of technical appearance and investigation of effective characteristics of power plant of perspective supersonic passenger aircraft. Aviation Industry. 2019. No. 3-4. P. 9-14. (In Russ.)
  69. Inostrannye aviatsionnye dvigateli: spravochnik / pod red. L.I. Sorkina [Foreign aircraft engines, 2000: Handbook]. Moscow: Aviamir Publ., 2000. 534 p.
  70. Inostrannye aviatsionnye dvigateli i gazoturbinnye ustanovki (po materialam zarubezhnykh publikatsiy): spravochnik / pod red. L.I. Sorkina, G.K. Vedeshkina, A.N. Knyazeva [Foreign aircraft engines and gas turbine power plants: handbook (based on materials of foreign publications.) / ed. by L.I. Sorkin, G.K. Vedeshkin, A.N. Knyazev]. Moscow: CIAM Publ., 2010. 415 p.
  71. Zrelov V.A. Otechestvennye GTD. Osnovnye parametry i konstruktivnye skhemy: ucheb. posobie [Domestic gas turbine engines. Basic parameters and design schemes]. Moscow: Mashinostroenie Publ., 2005. 336 p.
  72. Annex 16. V. I. Environmental protection - Aircraft noise. ICAO, 2014.
  73. Yakurnova K.A., Alendar A.D. Analysis of foreign works on the creation of a bypass turbojet on the basis of the core engine. Proceedings of the XLVII Gagarin Science Conference (April, 20-23, 2021, Moscow). Moscow: Pero Publ., 2021. P. 202-203. (In Russ.)
  74. Berton J.J., Huff D.L, Geiselhart K., Seidel J.A. Supersonic technology concept aeroplanes for environmental studies. AIAA SciTech Forum 2020 (January, 6-10, 2020, Orlando, Florida). doi: 10.2514/6.2020-0263
  75. Pozharinskiy A.A., Kuznetsov V.A. Dvukhkonturnyy turboreaktivnyy dvigatel' [Dual-flow turbojet engine]. Patent RF, no. 2488710, 2013. (Publ. 27.07.2013, bull. no. 21)
  76. Korovkin V., Evstigneev A., Makarov V., Strelets D., Shevelev O., Kopiev V., Belyaev I. Concept of prototype of near-term supersonic commercial aircraft with derivative engines based on existing cores. 24th International Society of Air Breathing Engines – ISABE 2019 (September, 22-27, 2019, Canberra).
  77. Nordqvist M., Kareliusson J., Silva E.R., Kyprianidis K.G. Conceptual design of a turbofan engine for a supersonic business jet. 23-th International Society of Air Breathing Engines – ISABE 2017 (September, 03-08, 2017, Manchester).
  78. Siluyanova M.V., Kuritsyna V.V., Alendar’ A.D., Grunin A.N. Influence of engine parameters on the power-unit performance in supersonic aircraft. Russian Engineering Research. 2020. V. 40, Iss. 12. P. 1048-1051. doi: 10.3103/S1068798X20120187
  79. Mirzoyan A.A., Khaletskii I.D. Take-off thrust and noise control for supersonic civil transport engines. Aviation Engines. 2020. No. 2 (7). P. 51-56. (In Russ.)
  80. Mirzoyan A.A., Ryabov P.A. Opyt issledovaniy v proekte FP6 HISAC maloshumnykh programm upravleniya vzletnoy tyagoy SPS. Tezisy Dokladov Pyatoy Otkrytoy Vserossiyskoy (XVII Nauchno-Tekhnicheskoy) Konferentsii po Aeroakustike (September, 25-29, 2017, Moscow). Zhukovskiy: TsAGI Publ., 2017. P. 288. (In Russ.)
  81. Nakamura T., Oka T., Imanari K. Development of CMC turbine parts for aero engines. IHI Engineering Review. 2014. V. 47, Iss. 1. P. 29-32.
  82. Mezentsev M.A., Myktybekov B., Sinitsyn A.V., Ezhov A.Y., Tsvetkov I.V., Palchikov D.S., Vybornov D.I. Research and application of structural ceramic and composite materials in aircraft engine. Russian Internet Journal of Industrial Engineering. 2022. V. 9, no. 1. P. 19-27. doi: 10.24892/RIJIE/20220204
  83. Mezentsev M.A., Karimbayev T.D., Palchikov D.S., Sinitsyn A.V. Technologies for creating and testing high-temperature parts from ceramic matrix composite. Sbornik Dokladov Mezhdunarodnoy Nauchno-Tekhnicheskoy Konferentsii «Problemy i Perspektivy Razvitiya Dvigatelestroeniya» (June, 23-25, 2021, Samara). V. 2. Samara: Samara University Publ., 2021. P. 336-337. (In Russ.)
  84. Lukovnikov A.V. Central Institute of Aviation Motors Research to ensure the creation of a power plant for a second generation supersonic civil aircraft. Abstracts XLVI Academic Space Conference (January, 25-28, 2022, Moscow). V. 3. Moscow: Bauman Moscow State Technical University Publ., 2022. P. 390-392. (In Russ.)
  85. Nesterenko V.G., Abbavaram R.R. Air-to-air heat exchangers of the high-pressure turbine rotor cooling system in modern aviation turbojet. Engineering Journal: Science and Innovation. 2018. No. 11 (83). doi: 10.18698/2308-6033-2018-11-1827
  86. Zhuang L., Xu G., Dong B., Liu Q., Li M., Wen J. Exergetic effects of cooled cooling air technology on the turbofan engine during a typical mission. Energies. 2022. V. 15, Iss. 14. doi: 10.3390/en15144946
  87. Lepeshkin A.R., Svetlakov A.L., Verbanov I.S. Reducing surface roughness and leak testing of heat exchangers manufactured using additive technology. Materialy XVII Mezhdunarodnoy Nauchno-Prakticheskoy Konferentsii «Energo- i Resursosberezhenie – XXI Vek» (December, 02-04, 2019, Orel). Orel: Orel State University Publ., 2019. P. 149-153. (In Russ.)
  88. Magerramova L.A., Nozhnitsky Yu.A., Volkov S.A., Volkov М.E., Chepurnov V.Zh., Belov S.V., Verbanov I.S., Zaikin S.V. Prospects of application of additive technologies to develop parts and components of gas turbine engines and ramjets. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2019. V. 18, no. 3. P. 81-98. (In Russ.). doi: 10.18287/2541-7533-2019-18-3-81-98

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies