Influence of subwave details of microrelief on the diffraction pattern of gaussian beams


The paper deals with the influence of subwavelength details with two types of etching of microrelief (ridge and groove) on the diffraction pattern. Modeling the diffraction of uniform-polarization radiation corresponding to both a Gaussian beam and a vortical Gaussian-Laguerre beam is performed by the method of solving Maxwell equations by finite differences in time domain (FDTD). The characteristics and features of the diffraction pattern in the near zone, including those connected with the formation of the longitudinal component of the electric field are determined.

About the authors

D. A. Savelyev

Samara State Aerospace University

Author for correspondence.

Post-graduate Student

Russian Federation

S. N. Khonina

Image Processing Systems Institute of the Russian Academy of Sciences


Doctor of Science (Physics and Mathematics), Professor

Leading Researcher

Russian Federation


  1. Levenson M.D. Using destructive optical interference in semiconductor lithography // OPN. April 2006. P. 31-35. doi: 10.1364/opn.17.4.000030
  2. Vozobova N.D., Denysiuk I.Y. Opticheskie metody formirovaniya mikroelementov informatsionnykh system [Optical methods for the formation of microelements of information systems]. St. P.: St. P. ITMO Publ., 2008. 82 p.
  3. Artl J. and Padgett M.J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam // Opt. Lett. 2000. V. 25. P. 191-193. doi: 10.1364/ol.25.000191
  4. Khonina S.N., Balalayev S.A., Skidanov R.V., Kotlyar V.V., Paivanranta B., Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams // J. Opt. A: Pure Appl. Opt. 2009. V. 11. P. 065702-065709. doi: 10.1088/1464-4258/11/6/065702
  5. Tychinskii V.P. Superresolution and singularities in phase images // Advances in Physical Sciences. 2008. V. 178(11). Р. 1205-1214 (In Russ.)
  6. Wang W., Ishii N., Hanson S.G., Miyamoto Y. and Takeda M. Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement // Opt. Commun. 2005. V. 248. P. 59-68. doi: 10.1016/j.optcom.2004.11.101
  7. Wang W., Yokozeki T., Ishijima R., Wada A., Miyamoto Y. and Mitsuo Takeda. Optical vortex metrology for nanometric speckle displacement measurement // Opt. Express. 2006. V. 14, is. 1. P. 120-127. doi: 10.1364/opex.14.000120
  8. Angelsky O.V., Burkovets D.N., Maksimyak P.P., Hanson S.G. Applicability of the singular-optics concept for diagnostics of random and fractal rough surfaces // Applied Optics. 2003. V. 42, no. 22. Р. 4529-4540. doi: 10.1364/ao.42.004529
  9. Khonina S.N., Savelyev D.A., Ustinov A.V. Diffraction of laser beam on a two-zone cylindrical microelement // Computer Optics. 2013. V. 37, no. 2. P. 160-169 (In Russ.) doi: 10.18287/0134-2452-2013-37-2-160-169
  10. Khonina S.N., Volotovsky S.G. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures // J. Opt. Soc. Am. A. 2010. V. 27, is. 10. P. 2188-2197. doi: 10.1364/josaa.27.002188
  11. Khonina S.N., Nesterenko D.V., Morozov A.A., Skidanov R.V., Pustovoy I.A.
  12. Experimental research of diffraction of an linearly-polarized Gaussian beam by binary microaxicon with the period close to wavelength // Computer Optics. 2011. V. 35, no. 1. P. 11-21. (In Russ.)
  13. Khonina S.N., Kazanskiy N.L., Volotovsky S.G. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system // Journal of Modern Optics. 2011. V. 58, is. 9. P. 748-760. doi: 10.1080/09500340.2011.568710
  14. Khonina S.N., Savelyev D.A., Serafimovich P.G., Pustovoy I.A. Diffraction on binary micro-axicons in a near zone // Journal of Optical Technology. 2012. V. 79(10). P. 626-631. doi: 10.1364/JOT.79.000626
  15. Oskooi A.F., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method // Computer Physics Communications. 2010. V. 181. P. 687-702. doi: 10.1016/j.cpc.2009.11.008
  16. Savelyev D.A., Khonina S.N. Maximising the longitudinal electric component at diffraction on a binary axicon linearlypolarized radiation // Computer Optics. 2012. V. 36, no. 4. P. 511-517 (In Russ.)
  17. Khonina S.N. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions // Optical Engineering. 2013. V. 52(9). Art. no. 091711 (7 p.) doi: 10.1117/1.oe.52.9.091711
  18. Khonina S.N., Karpeev S.V., Alferov S.V., Savelyev D.A., Laukkanen J., Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams // J. Opt. 2013. V. 15. Art. no. 085704 (9 p.) doi: 10.1088/2040-8978/15/8/085704
  19. Dedecker P., Muls B., Hofkens J., Enderlein J., Hotta J.-I. Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams // Opt. Express. 2007. V. 15. P. 3372–3383. doi: 10.1364/oe.15.003372



Abstract: 3110

PDF (Russian): 1847




  • There are currently no refbacks.

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies