Influence of subwave details of microrelief on the diffraction pattern of gaussian beams
- Authors: Savelyev D.A.1, Khonina S.N.2
-
Affiliations:
- Samara State Aerospace University
- Image Processing Systems Institute of the Russian Academy of Sciences
- Issue: Vol 13, No 1 (2014)
- Pages: 275-286
- Section: CONTROL, COMPUTER SCIENCE AND INFORMATION SCIENCE
- URL: https://journals.ssau.ru/vestnik/article/view/1721
- DOI: https://doi.org/10.18287/1998-6629-2014-0-1(43)-275-286
- ID: 1721
Cite item
Full Text
Abstract
The paper deals with the influence of subwavelength details with two types of etching of microrelief (ridge and groove) on the diffraction pattern. Modeling the diffraction of uniform-polarization radiation corresponding to both a Gaussian beam and a vortical Gaussian-Laguerre beam is performed by the method of solving Maxwell equations by finite differences in time domain (FDTD). The characteristics and features of the diffraction pattern in the near zone, including those connected with the formation of the longitudinal component of the electric field are determined.
About the authors
D. A. Savelyev
Samara State Aerospace University
Author for correspondence.
Email: dmitrey.savelyev@yandex.ru
Post-graduate Student
Russian FederationS. N. Khonina
Image Processing Systems Institute of the Russian Academy of Sciences
Email: khonina@smr.ru
Doctor of Science (Physics and Mathematics), Professor
Leading Researcher
Russian FederationReferences
- Levenson M.D. Using destructive optical interference in semiconductor lithography // OPN. April 2006. P. 31-35. doi: 10.1364/opn.17.4.000030
- Vozobova N.D., Denysiuk I.Y. Opticheskie metody formirovaniya mikroelementov informatsionnykh system [Optical methods for the formation of microelements of information systems]. St. P.: St. P. ITMO Publ., 2008. 82 p.
- Artl J. and Padgett M.J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam // Opt. Lett. 2000. V. 25. P. 191-193. doi: 10.1364/ol.25.000191
- Khonina S.N., Balalayev S.A., Skidanov R.V., Kotlyar V.V., Paivanranta B., Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams // J. Opt. A: Pure Appl. Opt. 2009. V. 11. P. 065702-065709. doi: 10.1088/1464-4258/11/6/065702
- Tychinskii V.P. Superresolution and singularities in phase images // Advances in Physical Sciences. 2008. V. 178(11). Р. 1205-1214 (In Russ.)
- Wang W., Ishii N., Hanson S.G., Miyamoto Y. and Takeda M. Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement // Opt. Commun. 2005. V. 248. P. 59-68. doi: 10.1016/j.optcom.2004.11.101
- Wang W., Yokozeki T., Ishijima R., Wada A., Miyamoto Y. and Mitsuo Takeda. Optical vortex metrology for nanometric speckle displacement measurement // Opt. Express. 2006. V. 14, is. 1. P. 120-127. doi: 10.1364/opex.14.000120
- Angelsky O.V., Burkovets D.N., Maksimyak P.P., Hanson S.G. Applicability of the singular-optics concept for diagnostics of random and fractal rough surfaces // Applied Optics. 2003. V. 42, no. 22. Р. 4529-4540. doi: 10.1364/ao.42.004529
- Khonina S.N., Savelyev D.A., Ustinov A.V. Diffraction of laser beam on a two-zone cylindrical microelement // Computer Optics. 2013. V. 37, no. 2. P. 160-169 (In Russ.) doi: 10.18287/0134-2452-2013-37-2-160-169
- Khonina S.N., Volotovsky S.G. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures // J. Opt. Soc. Am. A. 2010. V. 27, is. 10. P. 2188-2197. doi: 10.1364/josaa.27.002188
- Khonina S.N., Nesterenko D.V., Morozov A.A., Skidanov R.V., Pustovoy I.A.
- Experimental research of diffraction of an linearly-polarized Gaussian beam by binary microaxicon with the period close to wavelength // Computer Optics. 2011. V. 35, no. 1. P. 11-21. (In Russ.)
- Khonina S.N., Kazanskiy N.L., Volotovsky S.G. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system // Journal of Modern Optics. 2011. V. 58, is. 9. P. 748-760. doi: 10.1080/09500340.2011.568710
- Khonina S.N., Savelyev D.A., Serafimovich P.G., Pustovoy I.A. Diffraction on binary micro-axicons in a near zone // Journal of Optical Technology. 2012. V. 79(10). P. 626-631. doi: 10.1364/JOT.79.000626
- Oskooi A.F., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method // Computer Physics Communications. 2010. V. 181. P. 687-702. doi: 10.1016/j.cpc.2009.11.008
- Savelyev D.A., Khonina S.N. Maximising the longitudinal electric component at diffraction on a binary axicon linearlypolarized radiation // Computer Optics. 2012. V. 36, no. 4. P. 511-517 (In Russ.)
- Khonina S.N. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions // Optical Engineering. 2013. V. 52(9). Art. no. 091711 (7 p.) doi: 10.1117/1.oe.52.9.091711
- Khonina S.N., Karpeev S.V., Alferov S.V., Savelyev D.A., Laukkanen J., Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams // J. Opt. 2013. V. 15. Art. no. 085704 (9 p.) doi: 10.1088/2040-8978/15/8/085704
- Dedecker P., Muls B., Hofkens J., Enderlein J., Hotta J.-I. Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams // Opt. Express. 2007. V. 15. P. 3372–3383. doi: 10.1364/oe.15.003372