Comparative modelling of laser beam propagation in a uniaxial crystal based on integral operators


Cite item

Full Text

Abstract

A comparative numerical calculation of propagation of Gauss-Laguerre and Bessel laser modes in an isotropic medium and in a uniaxial crystal by means of integral propagation operators based on the plane and spherical wave expansion is presented.
Numerical simulations with different types of beam polarization and different position of the crystal axis has made it possible to determine the conditions under which the greatest astigmatic distortion of the beams takes place. The analysis may be useful in practice to determine the position of the crystal axis.

About the authors

A. P. Krasnov

Samara State Aerospace University

Author for correspondence.
Email: kraan2009@yandex.ru

Undergraduate student

Russian Federation

S. N. Khonina

Image Processing Systems Institute of the Russian Academy of Sciences

Email: khonina@smr.ru

Doctor of Science (Physics and Mathematics), Professor

Leading Researcher

Russian Federation

References

  1. Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, 1999. 952 p.
  2. Luneburg R.K. Mathematical theory of optics. Berkeley, California: University of California Press, 1964. 440 p.
  3. Fedorov F.I. Optika anizotropnykh sred [Optics of anisotropic media]. Minsk: Academy of Sciences of BSSR Publ., 1958. 381 p.
  4. Yariv A., Yeh P. Optical waves in crystals: propagation and control of laser radiation. Wiley-Interscience, 2002. 608 p.
  5. Fleck J.A.Jr., Feit M.D. Beam propagation in uniaxial anisotropic media // J. Opt. Soc. Am. 1983. V. 73, no. 7. P. 920-926. doi: 10.1364/josa.73.000920
  6. Ciattoni A., Crosignani B., Di Porto P. Vectorial theory of propagation in uniaxially anisotropic media // J. Opt. Soc. Am. A. 2001. V. 18, no. 7. P. 1656-1661. doi: 10.1364/josaa.18.001656
  7. Doskolovich L.L., Kazanskiy N.L., Kharitonov S.I. Integral representations for solutions of Maxwell's equations for anisotropic media // Computer Optics. 2010. V. 34, no 1. P. 52-57. (In Russ.)
  8. Khonina S.N., Kharitonov S.I. Analogue of Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media // Computer Optics. 2012. V. 36, no 2. P. 172-182. (In Russ.)
  9. Khonina S.N., Kharitonov S.I. An analog of the Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media // Journal of Modern Optics. 2013. V. 60, no. 10. P. 814-822. doi: 10.1080/09500340.2013.814816
  10. Bleistein N., Handelsman R.A. Asymptotic expansions of integrals. New York: Holt, Rinehart and Winston, 1975. P. 340-359.
  11. Fadeyeva T.A., Shvedov V.G., Izdebskaya Y.V., Volyar A.V., Brasselet E., Neshev D.N., Desyatnikov A.S., Krolikowski W., Kivshar Y.S. Spatially engineered polarization states and optical vortices in uniaxial crystals // Opt. Expr. 2010. V. 18, no. 10. P. 10848-10863. doi: 10.1364/oe.18.010848
  12. Zusin D.H., Maksimenka R., Filippov V.V., Chulkov R.V., Perdrix M., Gobert O., Grabtchikov A.S. Bessel beam transformation by anisotropic crystals // J. Opt. Soc. Am. A. 2010. V. 27, no. 8. P. 1828-1833. doi: 10.1364/josaa.27.001828
  13. Picon A., Benseny A., Mompart J., Calvo G.F. Spin and orbital angular momentum propagation in anisotropic media: theory // J. Opt. 2011. V. 13. P. 064019 (7 p). doi: 10.1088/2040-8978/13/6/064019
  14. Khilo N.A. Conical diffraction and transformation of Bessel beams in biaxial crystals // Optics Communications. 2013. V. 286. P. 1-5. doi: 10.1016/j.optcom.2012.07.030
  15. Stallinga S. Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus // J. Opt. Soc. Am. A. 2001. V. 18, no. 11. P. 2846-2859. doi: 10.1364/josaa.18.002846
  16. Seshadri S.R. Beam dynamics of two modes propagating along the optic axis in a uniaxial crystal // J. Opt. Soc. Am. A. 2005. V. 22, no 2. P. 361-369. doi: 10.1364/josaa.22.000361
  17. Liu D., Zhou Z. Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis // J. Opt. A: Pure Appl. Opt. 2008. V. 10. P. 095005 (9 p). doi: 10.1088/1464-4258/10/9/095005
  18. Khonina S.N., Volotovsky S.G., Kharitonov S.I. Periodic intensity change for laser mode beams propagating in anisotropic uniaxial crystals // Izv. SNC RAN. 2012. V. 4, no. 4. P. 18-27. (In Russ.)
  19. Khonina S.N., Zoteeva O.V., Kharitonov S.I. Nonparaxial propagation of gaussian beams on the angle to the axis of the anisotropic crystal // Computer Optics. 2012. V. 36, no. 3. P. 346-356. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies