Research of textural features for the diagnostics of nephrological diseases using ultrasound images


Cite item

Full Text

Abstract

A method of automated diagnostics of kidney diseases using ultrasound images is proposed. The efficiency of different groups of information features of such images for the task of recognition is analyzed. According to the data of a number of experiments on real data the group of two Haralick’s features showed the best result. The estimation of probability of wrong recognition for that group was 0.06. Spectral correlation features also demonstated high efficiency, the estimation of the latter for them being 0.10.

About the authors

A. V. Gaidel

Samara State Aerospace University

Author for correspondence.
Email: andrey.gaidel@gmail.com

Postgraduate student

Technical Cybernetics Department

Russian Federation

S. N. Larionova

Samara State Medical University

Email: larionovasn@gmail.com

Senior Laboratory Assistant

Department of Operative Surgery and Clinical Anatomy with a Course on Innovation Technologies

Russian Federation

A. G. Khramov

Samara State Aerospace University

Email: khramov@smr.ru

Doctor of Science (Engineering), Professor

Technical Cybernetics Department

Russian Federation

References

  1. Rangayyan R.M. Biomedical Image Analysis. CRC Press, 2004. 1312 p.
  2. Chen D.-R., Chang R.-F., Chen Ch.-J., Ho M.-F., Kuo Sh.-J., Chen Sh.-T., Hung Sh.-J., Moon W.K. Classification of breast ultrasound images using fractal feature // Journal of Clinical Imaging.
  3. V. 29. P. 235-245. doi: 10.1016/j.clinimag.2004.11.024
  4. Übeyli E.D., Güler I. Feature extraction from Doppler ultrasound signals for automated diagnostic systems // Computers in Biology and Medicine. 2005. V. 35, is. 9. P. 735-764. doi: 10.1016/j.compbiomed.2004.06.006
  5. Wu Ch.-M., Chen Y.-Ch., Hsieh K.-Sh. Texture features for classification of ultrasonic liver images // IEEE Transactions on medical imaging. 1992. V. 11, is. 2. P. 141-152. doi: 10.1109/42.141636
  6. Christodoulou C.I., Pattichis C.S., Pantziaris M., Nicolaides A. Texture-based classification of atherosclerotic carotid plaques // IEEE Transactions on medical imaging. 2003. V. 22, is. 7. P. 902-912. doi: 10.1109/tmi.2003.815066
  7. Volkov I.K., Zuyev S.M., Tsvetkova G.M. Sluchaynye protsessy [Stochastic processes]. Moskow: Bauman Moscow State Technical University Publishers, 1999. 448 p.
  8. Petrou M., Garcia Sevilla P. Image processing: dealing with texture. Chichester, UK: John Wiley & Sons, Ltd. 2006. 618 p.
  9. Marple S.L., Jr. Digital spectral analysis with applications. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1987. 492 p.
  10. Haralick R.M., Shanmugam K., Dinstein Its’Hak. Textural features for image classification // IEEE Transactions on Systems, Man, and Cybernetics. November 1973. V. SMC-3. P. 610-621. doi: 10.1109/TSMC.1973.4309314
  11. Plastinin A. Regression models for texture image analysis // Pattern Recognition and Machine Intelligence. – 4th International Conference, PReMI 2011, Moscow, Russia, June 27 - July 1, 2011.
  12. P. 136-141. doi: 10.1007/978-3-642-21786-9_24
  13. Tou J.T., González R.C. Pattern recognition principles. Addison-Wesley Publishing Company, 1974. 377 p.
  14. Fukunaga K. Introduction to statistical pattern recognition. Academic Press, 1972. 592 p.
  15. Gaidel A.V., Pervushkin S.S. Research of the textural features for the bony tissue diseases diagnostics using the roentgenograms // Computer Optics. 2013. V. 37, no. 1. P.113-119. (in Russ.) doi: 10.18287/0134-2452-2013-37-1-113-119

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies