Development of microstructures for the formation of metamaterial properties of piezoelectric elements
- Authors: But V.S.1, Kobelev A.A.1, Karpeev S.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 21, No 4 (2022)
- Pages: 97-108
- Section: MECHANICAL ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/11051
- DOI: https://doi.org/10.18287/2541-7533-2022-21-4-97-108
- ID: 11051
Cite item
Full Text
Abstract
Microcells were designed for subsequent modeling of piezoelectric and optical elements on their basis. The development of piezoelectric and optical elements from microcells was carried out and models were prepared for 3D printing. These designs can be used in practice as piezoacoustic or piezoelectric sensors if piezoelectric powder is added to their composition, for example, in ultrasonic flow meters, or used to create optical structures, for example, diffractive optical elements. The key characteristics and coefficients of piezoelectric structures, such as dielectric constant, conversion coefficient, dielectric loss coefficient, mechanical Q-factor, frequency constant, electromechanical coupling coefficient, piezoelectric charge coefficient, piezoelectric stress coefficient, elastic compliance coefficient, degradation rate, Curie point are analyzed. Elements produced by 3D printing will have properties different from those of elements produced by standard methods. These structures open up new opportunities for the development of ultrasonic research, mechanical engineering and instrument making.
About the authors
V. S. But
Samara National Research University
Author for correspondence.
Email: mister_byt@mail.ru
Postgraduate Student
Russian FederationA. A. Kobelev
Samara National Research University
Email: kobelevanton89@mail.ru
Postgraduate Student
Russian FederationS. V. Karpeev
Samara National Research University
Email: karp@smr.ru
Doctor of Science (Phys. & Math.), Professor of the Department of Nanoengineering
Russian FederationReferences
- Andrianova A.V., Vinogradova I.L., Sultanov A.Kh., Meshkov I.K., Abdrakhmanova G.I., Grakhova E.P., Ishmiyarov A.A., Yantilina L.Z. An approach to synthesizing a 3D nanostructured glass-ceramic material based on intensive high-pressure torsion. Computer Optics. 2016. V. 40, no. 4. P. 489-500. (In Russ.). doi: 10.18287/2412-6179-2016-40-4-489-500
- Skidanov R.V., Doskolovich L.L., Ganchevskaya S.V., Blank V.A., Podlipnov V.V., Kazanskiy N.L. Experiment with a diffractive lens with a fixed focus position at several given wavelengths. Computer Optics. 2020. V. 44, no. 1. P. 22-28. (In Russ.). doi: 10.18287/2412-6179-CO-646
- Tripathi N., Pavelyev V.S., But V.S., Lebedev S.A., Kumar S., Sharma P., Mishra P., Sovetkina M.A., Fomchenkov S.A., Podlipnov V.V., Platonov V. Analysis and optimization of photonics devices manufacturing technologies based on Carbon Nanotubes. Journal of Physics: Conference Series. 2019. V. 1368, Iss. 2. doi: 10.1088/1742-6596/1368/2/022034
- Glushchenko A.G., Glushchenko E.P. The use of metamaterials to control the speed of light propagation in optical structures. Computer Optics. 2017. V. 41, no. 2. P. 202-207. (In Russ.). doi: 10.18287/2412-6179-2017-41-2-202-207
- Borminsky S.A., Solntseva A.V., Skvortsov B.V. A method for optoelectronic control of liquid volume in a tank. Computer Optics. 2016. V. 40, no. 4. P. 552-559. (In Russ.). doi: 10.18287/2412-6179-2016-40-4-552-559
- Storozhenko D.V., Dzyuba V.P., Kulchin Yu.N., Amosov A.V. Exciton optical nonlinearity of dielectric nanocomposites in weak optical fields. Computer Optics. 2016. V. 40, no. 6. P. 855-862. (In Russ.). doi: 10.18287/2412-6179-2016-40-6-855-862
- Volkov A.V., Kazanskiy N.L., Moiseyev O.Ju., Soifer V.A. A method for the diffractive microrelief formation using the layered photoresist growth. Optics and Lasers in Engineering. 1998. V. 29, Iss. 4-5. P. 281-288. doi: 10.1016/S0143-8166(97)00116-4
- Skidanov R.V., Moiseev O.Yu., Ganchevskaya S.V. Additive process for fabrication of phased optical diffraction elements. Journal of Optical Technology. 2016. V. 83, Iss. 1. P. 23-25. doi: 10.1364/JOT.83.000023
- Miklyaev Y.V., Karpeev S.V., Dyachenko P.N., Pavelyev V.S. Fabrication of three-dimensional photonic crystals by interference lithography with low light absorption. Journal of Modern Optics. 2009. V. 56, Iss. 9. P. 1133-1136. doi: 10.1080/09500340902919469
- Dyachenko P.N., Karpeev S.V., Pavelyev V.S. Fabrication and investigation of three-dimensional metallodielectric photonic crystals for infrared range. Computer Optics. 2010. V. 34, no. 4. P. 501-505. (In Russ.)
- Dyachenko P.N., Karpeev S.V., Fesik E.V., Miklyaev Y.V., Pavelyev V.S., Malchikov G.D. Fabrication of three-dimensional metallodielectric photonic crystals by interference lithography. Proceedings of SPIE - The International Society for Optical Engineering. 2010. V. 7713. doi: 10.1117/12.853791
- Dyachenko P.N., Karpeev S.V., Fesik E.V., Miklyaev Y.V., Pavelyev V.S., Malchikov G.D. The three-dimensional photonic crystals coated by gold nanoparticles. Optics Communications. 2011. V. 284, Iss. 3. P. 885-888. doi: 10.1016/j.optcom.2010.10.006
- Dyachenko P.N., Karpeev S.V., Pavelyev V.S. Fabrication and characterization of three-dimensional metallodielectric photonic crystals for infrared spectral region. Optics Communications. 2011. V. 284, Iss. 22. P. 5381-5383. doi: 10.1016/j.optcom.2011.07.062
- Cui H., Hensleigh R., Yao D., Maurya D., Priya S., Kumar P., Kang M.G., Priya Sh., Zheng X.R. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials. 2019. V. 18, Iss. 3. P. 234-241. doi: 10.1038/s41563-018-0268-1
- Yasuda H., Miyazawa Y., Charalampidis E.G., Chong C., Kevrekidis P.G., Yang J. Origami-based impact mitigation via rarefaction solitary wave creation. Science Advances. 2019. V. 5, Iss. 5. doi: 10.1126/sciadv.aau2835
- Pavelyev V.S., Borodin S.A., Kazanskiy N.L., Kostyuk G.F., Volkov A.V. Formation of diffractive microrelief on diamond film surface. Optics and Laser Technology. 2007. V. 39, Iss. 6. P. 1234-1238. doi: 10.1016/j.optlastec.2006.08.004
- Abul'khanov S.R., Kazanskii N.L., Doskolovich L.L., Kazakova O.Y. Manufacture of diffractive optical elements by cutting on numerically controlled machine tools. Russian Engineering Research. 2011. V. 31, Iss. 12. P. 1268-1272. doi: 10.3103/S1068798X11120033
- Bezus E.A., Doskolovich L.L., Kazanskiy N.L. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings. Microelectronic Engineering. 2011. V. 88, Iss. 2. P. 170-174. doi: 10.1016/j.mee.2010.10.006
- Bezus E.A., Doskolovich L.L., Kazanskiy N.L. Interference pattern generation in evanescent electromagnetic waves for nanoscale lithography using waveguide diffraction gratings. Quantum Electronics. 2011. V. 41, Iss. 8. P. 759-764. doi: 10.1070/QE2011v041n08ABEH014500
- Kazanskiy N.L., Moiseev O.Y., Poletayev S.D. Microprofile formation by thermal oxidation of molybdenum films. Technical Physics Letters. 2016. V. 42, Iss. 2. P. 164-166. doi: 10.1134/s1063785016020085
- Kazanskiy N.L., Stepanenko I.S., Khaimovich A.I., Kravchenko S.V, Byzov E.V, Moiseev M.A. Injectional multilens molding parameters optimization. Computer Optics. 2016. V. 40, no. 2. P. 203-214. (In Russ.). doi: 10.18287/2412-6179-2016-40-2-203-214
- Protsenko V.I., Kazanskiy N.L., Serafimovich P.G. Real-time analysis of parameters of multiple object detection systems. Computer Optics. 2015. V. 39, no. 4. P. 582-591. (In Russ.). doi: 10.18287/0134-2452-2015-39-4-582-591
- Nikitin V.S., Semyonov E.I, Solostin A.V, Sharov V.G, Chayka S.V. Modeling the ‘Smartlink connection’ performance. Computer Optics. 2016. V. 40, no. 1. P. 64-72. (In Russ.). doi: 10.18287/2412-6179-2016-40-1-64-72
- Karpeev S.V., Ustinov A.V., Khonina S.N. Design and analysis of a three-wave diffraction focusing doublet. Computer Optics. 2016. V. 40, no. 2. P. 173-178. (In Russ.). doi: 10.18287/2412-6179-2015-40-2-173-178
- But V.S., Kobelev A.A., Karlin E.S., Karpeev S.V. Development and investigation of micro- and nanostructures of metamaterials to form the necessary characteristics and coefficients of piezoelectric elements. Journal of Physics: Conference Series. 2021. V. 1745. doi: 10.1088/1742-6596/1745/1/012008
- Tamir T., Zhang S. Resonant scattering by multilayered dielectric gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 1997. V. 14, Iss. 7. P. 1607-1616. doi: 10.1364/JOSAA.14.001607
- Wei C., Liu S., Deng D., Shen J., Shao J., Fan Z. Electric field enhancement in guided-mode resonance filters. Optics Letters. 2006. V. 31, Iss. 9. P. 1223-1225. doi: 10.1364/OL.31.001223
- Sun T., Ma J., Wang J., Jin Y., He H., Shao J., Fan Z. Electric field distribution in resonant reflection filters under normal incidence. Journal of Optics A: Pure and Applied Optics. 2008. V. 10, Iss. 12. doi: 10.1088/1464-4258/10/12/125003
- Difraktsionnaya optika i nanofotonika / pod red. V.A. Soifera [Diffractive optics and nanophotonics / ed. by V.A. Soifer]. Moscow: Fizmatlit Publ., 2014. 608 p.