Thermal treatment effect on the mechanical properties of 1570, 1580 and 1590 aluminum alloys


Cite item

Full Text

Abstract

The study addresses the effect of thermal treatment on the mechanical properties and grain size of magnesium rich alloys with small scandium additions 1570, 1580 and 1590. The effect of preheat temperature (within 260…440 °С range) and soaking time (within 2 – 100 hours range) on yield strength, tensile strength and relative elongation of the alloys under investigation  was analyzed. Mechanical properties were determined using uniaxial tensile tests in accordance with ISO 6892-1. In addition, for some modes the microstructure was studied for Al3Mg2 β-phase presence and distribution by optical metallography methods depending on thermal treatment conditions. The studies demonstrated that supersaturated solid solution in the 1570 alloy decomposes faster in the entire studied temperature range, and after 48 hours soaking, its strength properties start degrading. At the same time, the 1580 and 1590 alloys are much more thermally stable, with slightly lower yield strength after long soaking time, while tensile strength remains unchanged. The conditions of 260 °C annealing temperature are not favorable for plastic properties, severely degrading (due to β-phase formation) in the 1570 and 1580 alloys. Plastic properties degradation is not so evident at higher soaking temperature, however, the 1590 alloy maintains the highest plasticity indices.

About the authors

E. V. Aryshensky

Samara National Research University

Author for correspondence.
Email: arishenskiy.ev@ssau.ru
ORCID iD: 0000-0003-3875-7749
Russian Federation

V. Yu. Aryshensky

Samara National Research University;
Arconic SMZ, Samara

Email: arysh54@mail.ru
ORCID iD: 0000-0001-6869-4764

Doctor of Science (Engineering), Professor, Chief Researcher of Research Laboratory No. 4;
Chief Roller Operator

Russian Federation

A. М. Drits

Samara National Research University;
Arconic SMZ, Samara

Email: alexander.drits@arconic.com
ORCID iD: 0000-0002-9468-8736

Candidate of Science (Engineering), Leading Researcher
of Research Laboratory No. 4;
Director of Business Development and New Technologies

Russian Federation

F. V. Grechnikov

Samara National Research University

Email: gretch@ssau.ru
ORCID iD: 0000-0002-3767-4004

Academician of the Russian Academy of Sciences, Doctor of Science (Engineering), Head of the Department of Metal Forming

Russian Federation

A. A. Ragazin

Samara National Research University;
Arconic SMZ, Samara

Email: sanekragazin63@mail.ru
ORCID iD: 0000-0002-6762-7436

Postgraduate Student of the Department of Metal Technology and Aviation Materials, Engineer of Research Laboratory No. 4;
Leading Industrial Engineer

Russian Federation

References

  1. Ibragimov V.E., Bazhin V.Yu. Modern technologies for processing aluminum slags based on salt-free environmentally oriented methods. Natural and Technical Sciences. 2020. No. 6 (144). P. 155-162. (In Russ.). doi: 10.25633/ETN.2020.06.13
  2. Alattar A.L., Bazhin V.Yu. Al-Cu-B4C composite materials for the production of high-strength billets. Metallurgist. 2020. V. 64, Iss. 5-6. P. 566-573. doi: 10.1007/s11015-020-01028-2
  3. Akopyan T.K., Belov N.A., Letyagin N.V., Milovich F.O., Lukyanchuk A.A., Fortuna A.S. Influence of indium trace addition on the microstructure and precipitation hardening response in Al-Si-Cu casting aluminum alloy. Materials Science and Engineering: A. 2022. V. 831. doi: 10.1016/j.msea.2021.142329
  4. Shurkin P.K., Belov N.A., Musin A.F., Aksenov A.A. Novel high-strength casting Al-Zn-Mg-Ca-Fe aluminum alloy without heat treatment. Russian Journal of Non-Ferrous Metals. 2020. V. 61, Iss 2. P. 179-187. doi: 10.3103/S1067821220020121
  5. Deev V.B., Ri E.H., Prusov E.S., Ermakov M.A., Goncharov A.V. Grain refinement of casting aluminum alloys of the Al-Mg-Si system by processing the liquid phase using nanosecond electromagnetic pulses. Russian Journal of Non-Ferrous Metals. 2021. V. 62, Iss. 5. P. 522-530. doi: 10.3103/S1067821221050023
  6. Deev V., Prusov E., Shurkin P., Ri E., Smetanyuk S., Chen X., Konovalov S. Effect of la addition on solidification behavior and phase composition of cast Al-Mg-Si alloy. Metals. 2020. V. 10, Iss. 12. doi: 10.3390/met10121673
  7. Belov N.A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminievykh splavov [Phase composition of commercial and next-generation aluminum alloys]. Moscow: Izdatel'skiy Dom MISiS Publ., 2010. 511 p.
  8. Shvechkov E.I., Filatov Y.A., Zakharov V.V. Mechanical and life properties of sheets from alloys of the Al-Mg-Sc system. Metal Science and Heat Treatment. 2017. V. 59, Iss. 7-8. С. 454-462. doi: 10.1007/s11041-017-0171-4
  9. Zakharov V.V. Kinetics of decomposition of the solid solution of scandium in aluminum in binary Al-Sc alloys. Metal Science and Heat Treatment. 2015. V. 57, Iss. 7-8. P. 410-414. doi: 10.1007/s11041-015-9897-z
  10. Yashin V.V., Ruschits S.V., Aryshensky E.V., Latushkin I.A. Rheological behavior of 01570 and AA5182 wrought aluminum alloys under hot deformation conditions. Tsvetnye Metally. 2019. No. 3. P. 64-69. (In Russ.). doi: 10.17580/tsm.2019.03.09
  11. Zakharov V.V., Fisenko I.A. On scandium saving in case of making scandium alloying addition to aluminium alloys. Tekhnologiya Legkikh Splavov. 2013. No. 4. P. 52-60. (In Russ.)
  12. Drits M.E., Toropova L.S., Bykov Yu.G., Elagin V.I., Filatov Yu.A., Zakharov V.V., Zolotarevsky Yu.S., Makarov A.G. Splav na osnove alyuminiya [Aluminum-base alloy]. Сopyright certificate USSR no.704266, 1979.
  13. Bronz A.V., Efremov V.I., Plotnikov A.D., Chernyavsky A.G. Alloy 1570C – material for pressurized structures of advanced reusable vehicles of RSC Energia. Space Engineering and Technology. 2014. No. 4 (7). P. 62-67. (In Russ.)
  14. GOST 4784-2019. Aluminium and wrought aluminium alloys. Grades. Moscow: Standartinform Publ., 2019. 26 p. (In Russ.)
  15. Sosedkov S.M., Drits A.M., Aryshensky V.Yu., Yashin V.V. Strain hardening of 1565ch, амg6, 01570 and 1580 alloy plates upon the cold rolling. Tekhnologiya Legkikh Splavov. 2020. No. 1. P. 39-43. (In Russ.)
  16. Drits A.M., Aryshenskij V.Yu., Aryshenskij E.V., Zakharov V.V. Svarivaemyy termicheski ne uprochnyaemyy splav na osnove sistemy Al-Mg [Welded thermally non-hardened alloy based on Al-Mg system]. Patent RF, no. 2726520, 2020. (Publ. 14.07.2020, bull. no. 20)
  17. Li H.Y., Li D.W., Zhu Z.X., Chen B.A., Xin C. H. E. N., Yang C.L., Wei K.A.G. Grain refinement mechanism of as-cast aluminum by hafnium. Transactions of Nonferrous Metals Society of China. 2016. V. 26, Iss. 12. P. 3059-3069. doi: 10.1016/S1003-6326(16)64438-2
  18. Booth-Morrison C., Dunand D.C., Seidman D.N. Coarsening resistance at 400 C of precipitation-strengthened Al-Zr-Sc-Er alloys. Acta Materialia. 2011. V. 59, Iss. 18. P. 7029-7042. doi: 10.1016/j.actamat.2011.07.057
  19. Hallem H., Lefebvre W., Forbord B., Danoix F., Marthinsen K. The formation of Al3(ScxZryHf1-x-y)-dispersoi ds in aluminium alloys. Materials Science and Engineering: A. 2006. V. 421, Iss. 1-2. P. 154-160. doi: 10.1016/j.msea.2005.11.063
  20. Engler O., Miller-Jupp S. Control of second-phase particles in the Al-Mg-Mn alloy AA 5083. Journal of Alloys and Compounds. 2016. V. 689. P. 998-1010. doi: 10.1016/j.jallcom.2016.08.070
  21. Handbook of aluminum. V. 1. Physical metallurgy and processes / ed. by Totten G.E., MacKenzie D.S. New York: CRC Press, 2003. 1310 p.
  22. Davydov V.G., Elagin V.I., Zakharov V.V., Rostova T.D. Alloying aluminum alloys with scandium and zirconium additives. Metal Science and Heat Treatment. 1996. V. 38, Iss. 8. P. 347-352. doi: 10.1007/bf01395323
  23. Yang C., Shao D., Zhang P., Kuang J., Wu K., Liu G., Sun J. The influence of Sc solute partitioning on ductile fracture of Sc-microalloyed Al-Cu alloys. Materials Science and Engineering: A. 2018. V. 717. P. 113-123. doi: 10.1016/j.msea.2018.01.078
  24. Ma G., Wang D., Xiao B., Ma Z. Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites. Acta Metallurgica Sinica (English Letters). 2021. V. 34, Iss. 10. P. 1447-1459. doi: 10.1007/s40195-021-01254-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies