Optical characteristics of a multilayer solar sail and their effect on its heliocentric motion


Cite item

Full Text

Abstract

The purpose of this work is to determine the influence of the optical characteristics of a thin multilayer solar sail on its orbital motion. First of all, the influence of the coefficients of reflection, scattering and absorption is investigated. These coefficients are computed on the basis of a mathematical model of the optical characteristics of a multilayer epitaxial thin film which is a solar sail itself. The paper considers the effect of temperature changes and sail surface degradation on its optical properties. Modeling of changes in optical characteristics is carried out drawing on an example of heliocentric flight from the Earth to Mercury applying locally optimal control laws. Applying the transfer matrix method and considering the distribution of solar spectral radiation optical parameters for two distinct constructions of a solar sail were obtained (aluminum and silver front coating).  

About the authors

M. A. Rozhkov

Samara National Research University

Author for correspondence.
Email: rozhkov.ma@ssau.ru
ORCID iD: 0000-0002-3323-9232

Postgraduate Student of the Department of Flight Dynamics and Control Systems

Russian Federation

References

  1. Polyakhova E.N. Kosmicheskiy polet s solnechnym parusom: problemy i perspektivy [Space flight with solar sail: problems and prospects]. Moscow: Nauka Publ., 1986. 304 p.
  2. McInnes C.R. Solar sailing: Technology, dynamics and mission applications. Springer Berlin, Heidelberg, 2004. 296 p.
  3. Mori O., Sawada H., Funase R., Morimoto M., Endo T., Yamamoto T., Tsuda Yu., Kawakatsu Ya., Kawaguchi J., Miyazaki Ya., Shirasawa Yo. First solar power sail demonstration by IKAROS. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 2010. V. 8, Iss. 27. P. 25-31. doi: 10.2322/tastj.8.To_4_25
  4. Kezerashvili R.Ya. Space exploration with a solar sail coated by materials that undergo thermal desorption. Acta Astronautica. 2015. V. 117. P. 231-237. doi: 10.1016/j.actaastro.2015.08.007
  5. Vulpetti G., Santoli S., Mocci G. Preliminary investigation on carbon nanotube membranes for photon solar sails. Journal of the British Interplanetary Society. 2008. V. 61, Iss. 8. P. 284-289.
  6. Vulpetti G., Johnson L., Matloff G.L. Solar sails: A novel approach to interplanetary travel. New York: Springer, 2015. 277 p. doi: 10.1007/978-1-4939-0941-4
  7. Stenzel O. The physics of thin film optical spectra. Cham: Springer, 2015. 352 p. doi: 10.1007/978-3-319-21602-7
  8. Gueymard C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy. 2004. V. 76, Iss. 4. P. 423-453. doi: 10.1016/J.SOLENER.2003.08.039
  9. Forward R.L. Grey solar sails. Proceedings of the 25th Joint Propulsion Conference (July, 10-12, 1989, Monterey, California). doi: 10.2514/6.1989-2343
  10. Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 1980. 836 p.
  11. Polyanskiy M.N. Refractive index database. Available at: https://refractiveindex.info
  12. Laboratory for Atmospheric & Space Physics. LASP Interactive Solar Irradiance Datacenter (LISIRD). Available at: https://lasp.colorado.edu/lisird/
  13. Dachwald B., Mengali G., Quarta A.A., Macdonald M. Parametric model and optimal control of solar sails with optical degradation. Journal of Guidance, Control, and Dynamics. 2006. V. 29, Iss 5. P. 1170-1178. doi: 10.2514/1.20313
  14. Koblik V.V., Polyakhova E.N., Sokolov L.L., Shmyrov A.S. Controlled solar sailing transfer flights into near-Sun orbits under restrictions on sail temperature. Cosmic Research. 1996. V. 34, Iss. 6. P. 572-578.
  15. Kezerashvili R.Y., Macdonald M. Solar sail: Materials and space environmental effects. In book: «Advances in Solar Sailing». Springer-Verlag, Berlin, Heidelberg, 2014. P. 573-592. doi: 10.1007/978-3-642-34907-2_36
  16. Khabibullin R.M., Starinova O.L. An algorithm for controlling the spatial motion of a spacecraft with an imperfectly reflecting solar sail based on the laws of locally optimal control for Earth – Mars heliocentric flight. Engineering Journal: Science and Innovation. 2020. No. 8 (104). (In Russ.). doi: 10.18698/2308-6033-2020-8-2006
  17. Wright J.L. Space sailing. Taylor & Francis, 1992. 258 p.
  18. Dever J.A., Miller S.K., Sechkar E.A., Wittberg T.N. Space environment exposure of polymer films on the materials international space station experiment: Results from MISSE 1 and MISSE 2. High Performance Polymers. 2008. V. 20, Iss. 4-5. P. 371-387. doi: 10.1177/0954008308089704
  19. Woods T.N., Chamberlin P.C., Harder J.W., Hock R.A., Snow M., Eparvier F.G., Fontenla J., McClintock W.E., Richard E.C. Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophysical Research Letters. 2009. V. 36, Iss. 1. doi: 10.1029/2008GL036373

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies