Basic aspects of topological technology of automated on-board equipment layout in space vehicle compartments using the example of “Yantar-2k” Earth remote sensing space vehicle


Cite item

Abstract

The article presents the theoretical foundations of automated design of on-board equipment layout in spacecraft compartments in terms of topology. The purpose of the work is to create a flexible arrangement model that would allow solving the problem for any configuration of the structure, taking into account the engineering and operational restrictions imposed on the objects located in a limited space. The technology is formalized according to the methods of the foundations of topology and in this work is demonstrated for a two-dimensional case by comparing it with a reference design-layout scheme. The functional, installation, dimensional, thermal, vibroacoustic requirements are taken into account with the mass-centering restrictions of the layout. In the course of the study, a new approach to describing the design process of assembling on-board equipment was obtained, which can be fully digitized and then integrated into known computer-aided design systems. It has been verified using the example of the power supply system of the “Yantar-2k” spacecraft.

About the authors

A. A. Belyakov

Samara National Research University

Author for correspondence.
Email: jake.dunn@inbox.ru
ORCID iD: 0000-0002-5789-8048

Student

Russian Federation

A. I. Shulepov

Samara National Research University

Email: shulepov-al@mail.ru

Candidate of Science (Engineering), Associate Professor of the Department of Space Engineering

Russian Federation

References

  1. Belyakov А.А., Shulepov А.I. Analysis of on-board equipment layout on example of rocket stage «Volga». Materialy Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Aktual'nye Problemy Raketno-kosmicheskoy Tekhniki» (VII Kozlovskie Chteniya) (August, 31, 2021, Samara). Samara: Samarskiy Nauchnyy Tsentr RAN Publ., 2021. P. 64-73. (In Russ.)
  2. Shulepov A.I., Gavrilov V.N., Miatishkin G.V. Automated cargo accommodation aboard transport space vehicles. Vestnik of the Samara State Aerospace University. 2003. No. 1 (3). P. 47-49. (In Russ.)
  3. Kurenkov V.I., Salmin V.V., Prokhorov A.G. Metodika vybora osnovnykh proektnykh kharakteristik i konstruktivnogo oblika kosmicheskikh apparatov nablyudeniya: ucheb. posobie [Methodology of choosing general design characteristics and design concept of observation spacecraft: Study guide]. Samara: Samara State Aerospace University Publ., 2007. 160 p.
  4. Anshakov G.P., Biryuk V.V., Vasil'ev V.V., Salmin V.V. Chislennoe modelirovanie teplovogo sostoyaniya na kosmicheskom apparate «Foton». Trudy V Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Protsessy Goreniya, Teploobmena i Ekologiya Teplovykh Dvigateley» (October, 5-7, 2004, Samara). Iss. 5. Samara: Samara State Aerospace University Publ., 2004. P. 9-16. (In Russ.)
  5. Boltyanskiy V.G., Efremovich V.A. Naglyadnaya topologiya [Intuitive topology]. Moscow: Nauka Publ., 1982. 160 p.
  6. Atamasov V.D., Belyaev S.G. Sistemy ispolnitel'nykh organov kosmicheskogo apparata «Yantar'»: ucheb. posobie [Systems of effectors of «Yantar» spacecraft: study guide]. SPb: Baltic State Technical University Publ., 2013. 135 p.
  7. Markin L.V., Korn G.V., Kyi Mi Han., E Vin Tun Discrete models of aircraft equipment layout geometric modeling. Trudy MAI. 2016. No. 86. (In Russ.). Available at: https://trudymai.ru/published.php?ID=66465
  8. Bodryshev S.V. Metody prostranstvennoy komponovki na osnove funktsional'nykh zavisimostey ekspluatatsionnykh parametrov [Methods of spatial arrangement based on functional relationship of operating parameters]. Moscow: Moscow Aviation Institute Publ., 2006. 167 p.
  9. Pikulin S.А., Krasilova Е.V. Usage of topology optimization in the design of unmanned spacecrafts. Materialy XXII Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Reshetnevskie Chteniya» (November, 12-16, 2018, Krasnoyarsk). Part 1. Krasnoyarsk: Reshetnev Siberian State University Publ., 2018. P. 48-49. (In Russ.)
  10. Belyakov А.А., Shulepov А.I. Development of algorythm of load distribution in cargo modules of space transportation vehicle. Vestnik Amurskogo Gosudarstvennogo Universiteta. Seriya: Estestvennye i Ekonomicheskie Nauki. 2020. No. 91. P. 19-30. (In Russ.). doi: 10.22250/jasu.4
  11. Belyakov А.А. Topologicheskie metody opisaniya geometricheskikh modeley bortovoy apparatury v zadache ee razmeshcheniya na bortu kosmicheskogo apparata. Trudy XIII Obshcherossiyskoy molodezhnoy nauchno-tekhnicheskoy konferentsii «Molodezh'. Tekhnika. Kosmos» (April, 19-23, 2021, Saint Petersburg). V. 1. SPb: Baltic State Technical University Publ., 2021. P. 165-169. (In Russ.)
  12. Bashin К.А., Torsunov R.А., Semenov S.V. Topology optimization methods in aerospace industry. PNRPU Aerospace Engineering Bulletin. 2017. No. 51. P. 51-61. (In Russ.). doi: 10.15593/2224-9982/2017.51.05
  13. Martynyuk V.А., Nynnyrova А.S. Design standards for working out geometric models of products. Internet Journal «Naukovedenie». 2016. V. 8, no. 6 (37). Available at: http://naukovedenie.ru/PDF/125TVN616.pdf
  14. Belyakov А.А., Shulepov А.I. Problems of spacecraft reverse engineering practice. Materialy XXV Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Reshetnevskie Chteniya», posvyashchennoy pamyati general'nogo konstruktora raketno-kosmicheskikh sistem akademika M.F. Reshetneva (November, 10-12, 2021, Krasnoyarsk). Part 1. Krasnoyarsk: Reshetnev Siberian State University Publ., 2021. P. 8-9. (In Russ.)

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies