Aspects of simulating stable low-cycle fatigue crack growth in the main parts of aircraft gas turbine engines
- Authors: Ryabov A.A.1, Mokhov K.Y.1, Voronkov O.V.1, Kudryavtsev A.Y.1, Museev A.A.2
-
Affiliations:
- Sarov Engineering Center Ltd.
- JSC UEC-Klimov
- Issue: Vol 21, No 3 (2022)
- Pages: 127-140
- Section: MECHANICAL ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/10853
- DOI: https://doi.org/10.18287/2541-7533-2022-21-3-127-140
- ID: 10853
Cite item
Full Text
Abstract
The article presents theoretical basis for the industry-based approach for finite element modeling of stable crack growth in the main parts of an aviation gas turbine engine. An axial compressor disc is used as an example. Parameters of typical FE-models applied are provided. In addition, some effective practices of FE-modeling representing the novelty of this work are described: crack evolution increment under-relaxation and automation of the process of constructing a new crack front. Some simulation results are presented demonstrating implementation of the approach steps and benefits gained from the application of the listed features. Under-relaxation ensures maintaining the stability of a numerical solution for a significantly larger crack increment size. This leads to essential effort decrease as a result of reducing the total number of simulation cycles required. Automatic construction of a new crack front allows significant improvement in crack representation accuracy during the simulation process due to the greater number of points for which crack front evolution is determined.
About the authors
A. A. Ryabov
Sarov Engineering Center Ltd.
Author for correspondence.
Email: alex.ryabov@saec.ru
ORCID iD: 0000-0001-6133-0108
Doctor of Science (Phys. & Math.), Director
Russian FederationK. Yu. Mokhov
Sarov Engineering Center Ltd.
Email: kmokhov@saec.ru
ORCID iD: 0000-0003-0279-0870
Head of Department
Russian FederationO. V. Voronkov
Sarov Engineering Center Ltd.
Email: ovoronkov@saec.ru
Candidate of Science (Engineering); Senior Research Associate
Russian FederationA. Yu. Kudryavtsev
Sarov Engineering Center Ltd.
Email: kudryavtsev@saec.ru
ORCID iD: 0000-0002-0427-5541
Candidate of Science (Phys. & Math.), Head of Department
Russian FederationA. A. Museev
JSC UEC-Klimov
Email: museev_aa@klimov.ru
Head of Simulation Department
Russian FederationReferences
- Griffith A.A. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society A. 1921. V. 221, Iss. 582-593 P. 163-198. doi: 10.1098/rsta.1921.0006
- Irwin G.R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics. 1957. V. 24, Iss. 3. P. 361-364. doi: 10.1115/1.4011547
- Broek D. Elementary engineering fracture mechanics. Netherlands, Leiden, 1974.
- Gdoutos E.E., Rodopoulos C.A., Yates J.R. Problems of fracture mechanics and fatigue: A solution guide. London, UK: Springer, 2003. 618 p. doi: 10.1007/978-94-017-2774-7
- Anderson T.L. Fracture mechanics. Fundamentals and applications. New York, USA: CRC Press, 2017. 661 p.
- Paris P., Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering (Transactions of the ASME). 1963. V. 12, Iss. 4. P. 528-533. doi: 10.1115/1.3656900
- Tumanov N.V., Lavrentyeva M.A. Prediction of aero engine discs cyclic life based on modeling the steady growth of low cycle fatigue cracks. Aviation Engines. 2019. No. 1 (2). P. 37-48. (In Russ.). doi: 10.54349/26586061_2019_1_37
- Tumanov N.V. Kinetic equation of stable growth for low cycle fatigue cracks. Vestnik of the Samara State Aerospace University. 2014. No. 5 (47), part 1. P. 18-26. (In Russ.). DOI: /10.18287/1998-6629-2014-0-5-1(47)-18-26
- Tumanov N.V. Physical and mechanical aspects of stable fatigue crack growth. Aerospace MAI Journal. 2011. V. 18, no. 2. P. 132-136. (In Russ.)
- Nozhnitsky Yu.A., Tumanov N.V., Cherkasova S.A., Lavrentyeva M.A. Fractographic methods of risidual life estimation for aero engine disks. Vestnik UGATU. 2011. V. 15, no. 4 (44). P. 39-45. (In Russ.)
- Rybin V.V. Bol'shie plasticheskie deformatsii i razrushenie metallov [Large plastic deformations and failure of metals]. Moscow: Metallurgiya Publ., 1986. 224 p.
- Zienkiewicz O.C., Taylor R.L., Fox D.D. The finite element method for solid and structural mechanics. Oxford, UK: Butterworth-Heinemann, 2014. 624 p. doi: 10.1016/C2009-0-26332-X
- Belytschko T., Liu W.K., Moran B., Elkhodary K.I. Nonlinear finite elements for continua and structures. Chichester, UK: Wiley, 2014. 804 p.
- Rege K., Lemu H.G. A review of fatigue crack propagation modelling techniques using FEM and XFEM. IOP Conference Series: Materials Science and Engineering. 2017. V. 276, Iss. 1. doi: 10.1088/1757-899X/276/1/012027
- Abaqus unified FEA. Complete solutions for realistic simulation. Available at: https://www.3ds.com/products-services/simulia/products/abaqus/
- Moës N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering. 1999. V. 46, Iss. 1. P. 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Khoei A.R. Extended finite element method. Theory and applications. Chichester, UK: Wiley, 2015. 602 p.
- Bonet J., Wood R.D. Nonlinear continuum mechanics for finite element analysis. Cambridge, USA: Cambridge University Press, 2008. 315 p.
- DS SIMULIA User Assistance 2021. Available at: https:// help.3ds.com/
- Cherepanov G.P. The propagation of cracks in a continuous medium. Journal of Applied Mathematics and Mechanics. 1967. V. 31, Iss. 3. P. 503-512. doi: 10.1016/0021-8928(67)90034-2
- Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics (Transactions ASME). 1964. V. 35, Iss. 2. P. 379-388. doi: 10.1115/1.3601206
- ISO/IEC JTC1/SC22/WG21 – The C++ Standards Committee – ISOCPP. Available at: http://www.open-std.org/jtc1/sc22/wg21/