Kinetic model and kerosene surrogate for calculating gas turbine engine emission of carcinogenic hydrocarbons


Cite item

Full Text

Abstract

To calculate the emission of carcinogenic polycyclic aromatic hydrocarbons by the combustion chambers of aircraft gas turbine engines, the A17 kinetic model has been developed, characterized by new blocks of elementary chemical reactions of hydrocarbon compounds oxidation and synthesis of polycyclic aromatic hydrocarbons. The results of model validation showed satisfactory agreement with the experimental data and the possibility of applying the model to describe combustion processes in gas turbine engine combustion chambers. A review and numerical study was carried out for 14 surrogates (model fuels) of aviation kerosene, the combustion of which can be described using the A17 model. Simulation of stabilized flame of a previously prepared mixture showed the effectiveness of Drexel, Liu, su4, UM1 surrogates, the predictions for which agree satisfactorily with the experimental data and provide the expected levels of concentration of polycyclic aromatic hydrocarbons. The calculations show the dependence of the concentration of the most carcinogenic polycyclic aromatic hydrocarbon – benzo(a)pyrene, and the ratio of the main combustion products CO2/H2O on the molar mass of the fuel. For the experimentally determined value of the molar mass of kerosene TS-1, the smallest deviation (up to 0.25%) is demonstrated by the su4 and UM1 surrogates. Due to the best predictive capability for the ignition delay time, normal flame propagation speed, pyrolysis and combustion products, the su4 and UM1 surrogates can be chosen to calculate the emission of carcinogenic polycyclic aromatic hydrocarbons  from aircraft gas turbine engine combustion chambers.

About the authors

A. S. Semenikhin

Samara National Research University

Author for correspondence.
Email: semenikhin.as@ssau.ru
ORCID iD: 0000-0001-7196-3304

Postgraduate Student of the Department of Thermal Engineering and Thermal Engines

Russian Federation

D. V. Idrisov

Samara National Research University

Email: idrisov57@yandex.ru

Postgraduate Student of the Department of Thermal Engineering

Russian Federation

I. V. Chechet

Samara National Research University

Email: chechet@ssau.ru
ORCID iD: 0000-0002-0439-1921

Candidate of Science (Engineering), Associate Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

S. G. Matveev

Samara National Research University

Email: msg@ssau.ru
ORCID iD: 0000-0002-2865-241X

Candidate of Science (Engineering), Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

S. V. Lukachev

Samara National Research University

Email: lukachev@ssau.ru

Doctor of Science (Engineering), Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

References

  1. Semenikhin A.S. Metod rascheta emissii kantserogennykh politsiklicheskikh aromaticheskikh uglevodorodov kamerami sgoraniya aviatsionnykh gazoturbinnykh dvigateley. Dis. … kand. tekhn. nauk [Method for calculating emissions of carcinogenic polycyclic aromatic hydrocarbons from combustion chambers of aircraft gas turbine engines. Cand.eng. sci. diss]. Samara, 2022. 156 p.
  2. Chechet I.V. Metodika opredeleniya emissii kantserogennykh aromaticheskikh uglevodorodov kamerami sgoraniya gazoturbinnykh dvigateley i ustanovok. Dis. ... kand. tekhn. nauk [Method for determining the emission of carcinogenic aromatic hydrocarbons by combustion chambers of gas turbine engines and power plants. Cand.eng. sci. diss]. Samara, 2018. 149 p.
  3. Wang H., Dames E., Sirjean B., Sheen D.A., Tango R., Violi A., Lai J.Y.W., Egolfopoulos F.N., Davidson D.F., Hanson R.K., Bowman C.T., Law C.K., Tsang W., Cernansky N.P., Miller D.L., Lindstedt R.P. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0. September 19, 2010. Available at: http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html
  4. Ranzi E., Frassoldati A., Grana R., Cuoci A., Faravelli T., Kelley A.P., Law C.K. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science. 2012. V. 38, Iss. 4. P. 468-501. doi: 10.1016/j.pecs.2012.03.004
  5. ANSYS Chemkin Theory Manual 17.0. San Diego: Reaction Design, 2015. 412 p.
  6. Belov G.V., Deminsky M.A., Iorish V.S., Potapkin B.V. The information system on physico-chemical properties of software package «Chemical Workbench». Proccedings of the XI International Conference on Computational Mechanics and Modern Applied Software Systems (July, 2-6, 2001, Moscow-Istra, Russian Federation). Moscow: MAI Publ., 2001. P. 75-76. (In Russ.)
  7. Blanquart G., Pitsch H. Thermochemical properties of polycyclic aromatic hydrocarbons (PAH) from G3MP2B3 calculations. Journal of Physical Chemistry A. 2007. V. 111, Iss. 28. P. 6510-6520. doi: 10.1021/jp068579w
  8. Raj A., Prada I.D.C., Amer A.A., Chung S.H. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combustion and Flame. 2012. V. 159, Iss. 2. P. 500-515. doi: 10.1016/j.combustflame.2011.08.011
  9. Wang Y., Raj A., Chung S.H. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame. 2013. V. 160, Iss. 9. P. 1667-1676. doi: 10.1016/j.combustflame.2013.03.013
  10. Slavinskaya N.A., Frank P. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combustion and Flame. 2009. V. 156, Iss. 9. P. 1705-1722. doi: 10.1016/j.combustflame.2009.04.013
  11. Semenikhin A.S., Savchenkova A.S., Chechet I.V., Matveev S.G., Liu Z., Frenklach M., Mebel A.M. Rate constants for H abstraction from benzo(a)pyrene and chrysene: A theoretical study. Physical Chemistry Chemical Physics. 2017. V. 19, Iss. 37. P. 25401-25413. doi: 10.1039/c7cp05560a
  12. Frenklach M., Mebel A.M. On the mechanism of soot nucleation. Physical Chemistry Chemical Physics. 2020. V. 22, Iss. 9. P. 5314-5331. doi: 10.1039/D0CP00116C
  13. Semenikhin A.S., Savchenkova A.S., Chechet I.V., Matveev S.G., Frenklach M., Mebel A.M. On the mechanism of soot nucleation. II. E-bridge formation at the PAH bay. Physical Chemistry Chemical Physics. 2022. V. 22, Iss. 30. P. 17196-17204. doi: 10.1039/d0cp02554b
  14. Frenklach M., Semenikhin A.S., Mebel A.M. On the Mechanism of soot nucleation. III. The Fate and facility of the E-Bridge. Journal of Physical Chemistry A. 2021. V. 125, Iss. 31. P. 6789-6795. doi: 10.1021/acs.jpca.1c04936
  15. Semenikhin A.S., Savchenkova A.S., Chechet I.V., Matveev S.G., Frenklach M., Mebel A.M. Transformation of an embedded five-membered ring in polycyclic aromatic hydrocarbons via the hydrogen-abstraction-acetylene-addition mechanism: A Theoretical study. Journal of Physical Chemistry A. 2021. V. 125, Iss. 16. P. 3341-3354. doi: 10.1021/acs.jpca.1c00900
  16. Savchenkova A.S., Semenikhin A.S., Chechet I.V., Matveev S.G., Konnov A.A., Mebel A.M. Mechanism and rate constants of the CH2 + CH2CO reactions in triplet and singlet states: A theoretical study. Journal of Computational Chemistry. 2019. V. 40, Iss. 2. P. 387-399. doi: 10.1002/jcc.25613
  17. Savchenkova A.S., Semenikhin A.S., Chechet I.V., Matveev S.G., Konnov A.A., Mebel A.M. Rate constants calculations of the CH2 + CH2CO reactions in triplet and singlet states by ab initio methods. Proceedings of the International Conference on Combustion Physics and Chemistry (July, 24-28, 2018, Samara, Russian Federation). Samara: Publishing OOO «Insoma-Press», 2018. P. 102.
  18. Savchenkova A.S., Semenikhin A.S., Chechet I.V., Matveev S.G., Konnov A.A., Mebel A.M. Revisiting diacetyl and acetic acid flames: The role of the ketene + OH reaction. Combustion and Flame. 2020. V. 218. P. 28-41. doi: 10.1016/j.combustflame.2020.04.021
  19. Castaldi M.J., Marinov N.M., Melius C.F., Huang J., Senkan S.M., Pit W.J., Charles K. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symposium (International) on Combustion. 1996. V. 26, Iss. 1. P. 693-702. doi: 10.1016/S0082-0784(96)80277-3
  20. Liu J., Hu E., Zeng W., Zheng W. A new surrogate fuel for emulating the physical and chemical properties of RP-3 kerosene. Fuel. 2020. V. 259. doi: 10.1016/j.fuel.2019.116210
  21. Kim D., Martz J., Violi A. A surrogate for emulating the physical and chemical properties of conventional jet fuel. Combustion and Flame. 2014. V. 161, Iss. 6. P. 1489-1498. doi: 10.1016/j.combustflame.2013.12.015
  22. Matveev S.G. Development of blend composition of aviation kerosene surrogate for the simulation of workflow of gas turbine engine combustion chamber. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2019. V. 18, no. 1. P. 78-87. (In Russ.). doi: 10.18287/2541-7533-2019-18-1-78-87
  23. Kolomzarov O.V., Abrashkin V.Y., Zubrilin I.A., Matveev S.G., Gamirullin M.D., Azimov R.A., Sipatov A.M. Research of the combustion of a pre-vaporated surrogate of aircraft kerosene in a model combustion chamber. Sb. dokladov Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Problemy i Perspektivy Razvitiya Dvigatelestroeniya» (June 23-25, 2021, Samara, Russia). V. 2. Samara: Samara University Publ., 2021. P. 158-159. (In Russ.)
  24. Lindstedt R.P., Maurice L.Q. Detailed chemical-kinetic model for aviation fuels. Journal of Propulsion and Power. 2000. V. 16, Iss. 2. P. 187-195. doi: 10.2514/2.5582
  25. Dean A.J., Penyazkov O.G., Sevruk K.L., Varatharajan B. Autoignition of surrogate fuels at elevated temperatures and pressures. Proceedings of the Combustion Institute. 2007. V. 31, Iss. 2. P. 2481-2488. doi: 10.1016/j.proci.2006.07.162
  26. Humer S., Frassoldati A., Granata S., Faravelli T., Ranzi E., Seiser R., Seshadri K. Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar nonpremixed flows. Proceedings of the Combustion Institute. 2007. V. 31, Iss. 1. Р. 393-400. doi: 10.1016/j.proci.2006.08.008
  27. Colket M., Edwards T., Williams S., Cernansky P.N., Miller D.L., Egolfopoulos F., Lindstedt P., Seshadri K., Dryer F.L., Law C.K., Friend D., Lenhert D.B., Pitsch H., Sarofim A., Smooke M., Tsang W. Development of an experimental database and kinetic models for surrogate jet fuels. 45th AIAA Aerospace Sciences Meeting (January, 8-11, 2007, Reno, Nevada, USA). V. 14. P. 9446-9466.
  28. Doute C., Delfau J., Akrich R., Vovelle C. Chemical structure of atmospheric pressure premixed n-decane and kerosene flames. Combustion Science and Technology. 1995. V. 106, Iss. 4-6. P. 327-344. doi: 10.1080/00102209508907785

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies