Gas-dynamic losses in the flow part of the channel charge of a solid-propellant rocket engine


Cite item

Full Text

Abstract

Modern methods of computational fluid dynamics have been used to study flows with mass supply in axisymmetric channels of solid-propellant rocket motor charges. The studies were carried out with the aim of increasing the accuracy of predicting the intraballistic parameters for performing engineering calculations. The analysis of changes in intraballistic characteristics in the flow part of the channel charge in the classical and nozzleless solid propellant rocket motors is carried out for different rates of mass supply from the combustion surface. For an isobaric combustion chamber, a characteristic velocity profile is shown along a tubular charge path and a charge with sudden expansion. It is shown that for a steady cosine profile of axial velocity after sudden expansion of the channel, a length of more than three gauges is required. For a high-speed combustion chamber, a comparison of the axial velocity profile is carried out depending on the flow velocity under different conditions of mass supply. The tendency of the influence of flow velocity on the character of the profile is noted. It is shown that at a Mach number over 0.5, an increase in the mass flow rate from the combustion surface provides a less filled velocity profile tending to cosine. The differences between the pressure losses in the flow passage of the channel charge, calculated in the axisymmetric approximation, and the losses determined using gas-dynamic functions, are shown. An increase of the mass flow rate in the charge channel of a nozzleless solid-propellant rocket motor leads to a decrease in pressure losses at Mach number over 0.8.

About the authors

A. N. A. N. Sabirzyanov

Kazan National Research Technical University

Author for correspondence.
Email: ANSabirzyanov@kai.ru

Candidate of Science (Engineering), Associate Professor of the Department of Jet Engines and Power Plants

Russian Federation

Ch. B. Khamatnurova

Kazan National Research Technical University

Email: Chulpan100@mail.ru

Postgraduate Student of the Department of Jet Engines and Power Plants

Russian Federation

V. V. Kuzmin

Kazan National Research Technical University

Email: doom890clo@gmail.com

Undergraduate Student

Russian Federation

References

  1. Volkov K.N., Emel'yanov V.N. Modelirovanie krupnykh vikhrey v raschetakh turbulentnykh techeniy [Large eddy simulation in calculations of turbulent flows]. Moscow: Fizmatlit Publ., 2011. 364 p.
  2. Volchkov E.P., Terekhov V.I., Terekhov V.V. Flow structure and heat and mass transfer in boundary layers with injection of chemically reacting substances (review). Combustion, Explosion, and Shock Waves. 2004. V. 40, Iss. 1. P. 1-16. doi: 10.1023/B:CESW.0000013663.27112.ab
  3. Leont'yev A.I., Lushchik V.G., Yakubenko A.E. Distinctive features of heat transfer in the region of a gas curtain formed on injection of extraneous gas. Fluid Dynamics. 2010. V. 45, Iss. 4. P. 559-565. doi: 10.1134/S0015462810040058
  4. Leont’ev A.I., Lushchik V.G., Makarova M.S. Features of heat transfer on a permeable surface in a compressible-gas flow. Doklady Physics. 2018. T. 63, Iss. 9. P. 374-374. doi: 10.1134/S1028335818090033
  5. Benderskiy B.Y., Chernova A.A. Formation of vortex structures in channels with mass injection and their interaction with surfaces in solid-fuel rocket engines. Thermophysics and Aeromechanics. 2015. V. 22, Iss. 2. P. 185-190. doi: 10.1134/S0869864315020055
  6. Kornilov V.I., Boiko A.V. Experimental modeling of air blowing into a turbulent boundary layer using an external pressure flow. Technical Physics. 2016. V. 61, Iss. 10. P. 1480-1488. doi: 10.1134/S1063784216100170
  7. Fakhrutdinov I.Kh., Kotel'nikov A.V. Konstruktsiya i proektirovanie raketnykh dvigateley tverdogo topliva: ucheb. dlya mashinostroitel'nykh vuzov [Construction and design of solid-propellant rocket engines. Textbook for mechanical engineering higher schools]. Moscow: Mashinostroenie Publ., 1987. 328 p.
  8. Irov Yu.D., Keyl' E.V., Maslov B.N., Pavlukhin Yu.A., Porodenko V.V., Stepanov E.A. Gazodinamicheskie funktsii. Pyatiznachnye tablitsy dlya adiabaticheskogo izentropicheskogo potoka i adiabaticheskogo neizentropicheskogo potoka s podvodom massy [Five-digit tables for adiabatic isentropic flow and adiabatic non-isentropic flow with mass supply]. Moscow: Mashinostroenie Publ., 1965. 398 p.
  9. Karelin V.A., Meleshko V.Yu., Shustachinskiy V.S., Atamanyuk V.M. Evaluation of hydraulic losses in the gas duct during combustion of solid-propellant charges. Chemical Physics and Mesoscopy. 2005. V. 7, no. 3. P. 319-327. (In Russ.)
  10. Milekhin Yu.M., Gusev S.A., Eykhenval'd V.N., Gordienko N.P. Sovershenstvovanie metoda prognozirovaniya vnutriballisticheskikh parametrov RDTT. Vos'maya Vserossiyskaya konferentsiya «Vnutrikamernye Protsessy i Gorenie v Ustanovkakh na Tverdom Toplive i Stvol'nykh Sistemakh (ICOC'2014)"» (September, 24-26, 2014, Moscow). Izhevsk: Institute of Mechanics UB RAS Publ., 2014. P. 237-239. (In Russ.)
  11. Aleksandrov V.N., Bytskevich V.M., Verkholomov V.M., Gramenitskiy M.D., Dulepov N.P., Skibin V.A., Surikov E.V., Khil'kevich V.Ya., Yanovskiy L.S. Integral'nye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh (Osnovy teorii i rascheta) [Integrated solid-propellant ramjet engines]. Moscow: IKTs «Akademkniga» Publ., 2006. 343 p.
  12. Lipanov A.M., Bobryshev V.P., Aliev A.V., Spiridonov F.F., Lisitsa V.D. Chislennyy eksperiment v teorii RDTT [Numerical experiment in the theory of solid-propellant rocket engines]. Yekaterinburg: UIF «Nauka» Publ., 1994. 300 p.
  13. Savel'ev S.K., Emel'yanov V.N., Benderskiy B.Ya. Eksperimental'nye metody issledovaniya gazodinamiki RDTT [Experimental methods of analyzing gas dynamics of solid-propellant rocket engines]. SPb: Nedra Publ., 2007. 267 p.
  14. Shishkov A.A. Gazodinamika porokhovykh raketnykh dvigateley [Gas dynamics of powder rocket engines]. Moscow: Mashinostroenie Publ., 1974. 156 p.
  15. Dorofeev A.A. Osnovy teorii teplovykh raketnykh dvigateley (Obshchaya teoriya raketnykh dvigateley) [Foundations of the theory of thermal rocket engines (General theory of rocket engines)]. Moscow: Bauman Moscow State Technical University Publ., 1999. 415 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies