On the efficiency of using the Navier-Stokes approximation in thermogasdynamic calculation of low-thrust liquid-propellant rocket engines at low Reynolds numbers


Cite item

Full Text

Abstract

A numerical method for thermogasdynamic calculation of low-thrust liquid rocket engines is presented. These engines are used as end organs of the system of space attitude control for nanosatellites and small spacecraft. The method is based on the use of the TERRA software package for thermodynamic calculation and the Ansys CFX software package for gas-dynamic calculation using the Navier-Stokes equations. The results of the thermogasdynamic calculation, as well as the flow pattern of the working fluid in the chamber, are presented. The results of validating the described method are also presented. Its capabilities and limitations are analyzed. The validation procedure is based on the comparison with the results of experimental data on the Reynolds number and the momentum thickness.

About the authors

A. D. Maksimov

Samara National Research University

Author for correspondence.
Email: asddsa2014@mail.ru
ORCID iD: 0000-0002-8444-7752

Postgraduate Student of the Department of Aircraft Engine Theory named after V.P. Lukachev

Russian Federation

S. A. Shustov

Samara National Research University

Email: shustov.st@yandex.ru

Doctor of Science (Engineering), Associate Professor, Professor of the Department of Aircraft Engine Theory named after V.P. Lukachev

Russian Federation

References

  1. Maksimov A.D., Chubenko T.A. Model of the propulsion unit of the small spacecraft control system. Polyot. All-Russian Scientific-Technical Journal. 2021. No 1. P. 38-50. (In Russ.)
  2. OKB «Fakel». Produktsiya. Statsionarnye plazmennye dvigateli [EDB «Fakel». Productions. Plasma thrusters]. Available at: https://fakel-russia.com/produkciya
  3. ANSYS CFX-Solver Modeling Guide, 2013, ANSYS Inc.
  4. Egorychev V.S., Shabliy L.S., Zubanov V.M. Modelirovanie vnutrikamernogo rabochego protsessa RDMT na gazoobraznykh kislorode i vodorode v ANSYS CFX: ucheb. posobie [Simulation of intrachamber work process of a low-thrust rocket engine fueled by gaseous oxygen and hydrogen in ANSYS CFX software package]. Samara: Samara University Publ., 2016. 136 p.
  5. Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya: Spravochnik v 10 tomakh / pod red. akad. Glushko V.P. T. 1. Metody rascheta [Thermodynamic and thermophysical properties of combustion products: Reference guide in 10 volumes / ed. by V.P.Glushko.V.1. Methods of calculation]. Moscow: VINITI AN SSSR Publ., 1971. 266 p.
  6. Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya: Spravochnik v 10 tomakh / pod red. akad. Glushko V.P. T. 4. Topliva na osnove chetyrekhokisi azota [Thermodynamic and thermophysical properties of combustion products: Reference guide in 10 volumes / ed. by V.P.Glushko. V.4. Nitrogen peroxide-based propellants]. Moscow: VINITI AN SSSR Publ., 1972. 528 p.
  7. Sarner S.F. Propellant chemistry. New York: Reinhold Publishing Corporation, 1966. 350 p.
  8. Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigateley: ucheb. dlya studentov vtuzov [Theory of rocket engines]. Moscow: Mashinostroenie Publ., 1989. 464 p.
  9. Egorychev V.S. Termodinamicheskiy raschet i proektirovanie kamer ZhRD s SPK TERRA: ucheb. posobie [Thermodynamic calculation and design of liquid-propellant engines in TERRA software package]. Samara: Samara State Aerospace University Publ., 2013. 108 p.
  10. March S. et al. Characteristics of nozzles for low-thrust engines. Voprosy Raketnoy Tekhniki. 1968. No. 11. P. 36-48. (In Russ.)
  11. Butenko V.A., Rylov Yu.P., Chikov V.P. Experimental investigation of the characteristics of small-sized nozzles. Fluid Dynamics. 1976. V. 11, Iss. 6. P. 936-939. doi: 10.1007/BF01026418
  12. Shustov S.A. Approbation of the numerical model of account of viscosity impact on the flow in low-thrust rocket engine nozzles in the approximation of a laminar boundary layer with sliding. Vestnik of the Samara State Aerospace University. 2009. No. 1 (17.) P. 69-78. (In Russ.). doi: 10.18287/2541-7533-2009-0-1(17)-69-78

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies